
©Copyright 2012

Kayur Dushyant Patel

Lowering the Barrier to Applying Machine Learning

Kayur Dushyant Patel

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2012

Reading Committee:

James A. Fogarty, Co-Chair

James A. Landay, Co-Chair

Steven M. Drucker

Program Authorized to Offer Degree:

Computer Science and Engineering

University of Washington

Abstract

Lowering the Barrier to Applying Machine Learning

Kayur Dushyant Patel

Co-Chairs of the Supervisory Committee:

Associate Professor James A. Fogarty

Computer Science and Engineering

Professor James A. Landay

Computer Science and Engineering

Data is driving the future of computation: analysis, visualization, and learning algorithms

power systems that help us diagnose cancer, live sustainably, and understand the universe.

Yet, the data explosion has outstripped our tools to process it, leaving a gap between

powerful new algorithms and what real programmers can apply in practice.

I examine how data affects the way we program. Specifically, this dissertation focuses on

using machine learning algorithms to train a model. I found that the key barrier to adoption

is not a poor understanding of the machine learning algorithms themselves, but rather a

poor understanding of the process for applying those algorithms and insufficient tool

support for that process. I have created new programming and analysis tools that support

programmers by helping them (1) implement machine learning systems and analyze results,

(2) debug data, and (3) design and track experiments.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . viii

Glossary . ix

Chapter 1: Introduction . 1

1.1 Machine Learning . 3

1.2 Scenario: Routing Physical Mail . 5

1.3 The Programming Process . 8

1.4 Outline . 10

Chapter 2: Related Work . 13

2.1 Writing and Managing Code . 13

2.2 Analyzing Data . 19

2.3 Experimentation . 24

2.4 Current Machine Learning Tools . 30

2.5 Summary . 40

Chapter 3: Studies . 41

3.1 Interviews . 42

3.2 Intermediate Interview Results . 43

3.3 Laboratory Study . 47

3.4 Results . 53

3.5 Implications for Tool Design . 66

3.6 Summary . 68

Chapter 4: Gestalt . 71

i

4.1 The Machine Learning Process . 72

4.2 Providing General Purpose Support . 73

4.3 Gestalt . 76

4.4 Evaluating Bug Finding in Gestalt . 82

4.5 Discussion . 89

4.6 Limitations . 92

4.7 Summary . 93

Chapter 5: Prospect . 95

5.1 Using Multiple Models . 96

5.2 The Prospect System . 97

5.3 Detecting Label Noise . 101

5.4 Generating New Features . 102

5.5 Experimental Setup . 104

5.6 Evaluating Label Noise Detection . 105

5.7 Evaluating Feature Generation . 108

5.8 User Study . 110

5.9 Limitations . 111

5.10 Summary . 112

Chapter 6: Hindsight . 113

6.1 The Components of Experimentation . 114

6.2 Supporting Experimentation with Hindsight . 117

6.3 Expanding Hindsight . 128

6.4 Summary . 130

Chapter 7: Conclusion . 131

7.1 Future Work . 131

7.2 Conclusion . 134

Bibliography . 136

ii

LIST OF FIGURES

Figure Number Page

1.1 Training amodel is just part of the process of building a handwritten digit recog-

nition system. The dashed lines show the steps involved in training amodel. The

solid lines show the steps involved in applying the model. Note there is overlap

in transforming physical mail to digits. 6

2.1 The image above shows the result of asking a question about the program’s be-

havior in the Whyline. The question is displayed below. The Whyline highlights

both the code and the objects in the 3D environment related to the question. It

also visualizes the set of instructions that led to the current state. This visual-

ization provides the programmer with a straightforward way of backtracking to

find the cause of the error. 17

2.2 Polaris allows users to interactively visualize a database. Polaris reads in a con-

nected database, understands the column types, and provides an interface for

creating visualizations by selecting columns. 21

2.3 Protovis breaks visualizations down into component parts (called marks) and

provides API support for composing visualizations based on those parts. This

image shows a bar chart composed of bar marks and associated code in Protovis. 22

2.4 A visualization of a Naïve Bayes algorithm by Becker et al. The visualizations

show important features, the breakdown by class (pie chart), and the number of

instances (height for pie chart). 24

2.5 The above figure show a Side Views preview for augmenting an image. The user

can see the image converted to polar coordinates side-by-side with the current

image. 29

2.6 This figure presents stages of training an image segmentationmodel usingCrayons.

The designer iterates between providing the learning algorithm with data by

coloring the image (right) and checking the effectiveness of the model by look-

ing at the overlay of the pixels (left). Over time they are able to develop a more

accurate model. 32

iii

2.7 The Weka experimenter interface provides programmers with some support for

visualizing data and tracking experiments. The tabs are organized according to

distinct tasks such as choosing a model and selecting features. Users can look

at the history list to the bottom left to see which models they have trained. . . 38

3.1 The figure above shows sketches from two interview participants. P3 was work-

ing on a classification problem and P7 was working on a clustering problem.

Note that the high level steps of problem formulation are the same (P3 calls it

theory and P7 calls it goal). Both involve collecting data (sensors for P3 and data

for P7). And both have an iterative process for improving the performance of

their model. 44

3.2 Web news classification, handwritten digit recognition, and sensor based activ-

ity recognition have similar classification pipelines. Programmers must parse

data and generate features to get the examples into a form a classification al-

gorithm can understand. After the data is in the right form they can explore

different algorithms and run experiments. 46

3.3 The figure above shows the handwritten digit recognition classification pipeline

and the toolset for the digits task. I provided participants with four tools used

for different tasks. The dashed lines show what the tools were used for. Partici-

pants collected and processed data in the digit collector. Participants generated

features by writing Java code in Eclipse and selected an algorithm and trained a

model using theWeka Explorer interface. Participants tested their model in three

ways: looking at the output in Weka, interacting with a simple digit calculator

application, and loading their model and testing data in the digit collector. . . . 48

3.4 Some participants in my laboratory study kept paper logs of the algorithms tried

and the corresponding accuracies. These logs can be useful – participants who

kept the logs performed better than those that did not. But the logs are brittle

because they are not complete. They still rely on the programmer to remember

some of the decisions involved in generating the results (e.g., in the example

above the programmer hasn’t specified which dataset and feature sets they are

using). If a programmer cannot remember these decisions, they cannot easily

recreate the same experiments. 60

4.1 Both gesture recognition and sentiment analysis share a common high level

data flow structure called the classification pipeline. Although the structure of

the classification pipeline is the same, the logic of each step in the data flow is

different. 72

iv

4.2 The implementation perspective provides programmers with structure through

its classification pipeline view (a) and flexibility by allowing them to write code

to represent their specific problem (b). A common data structure (c), shared

between analysis and implementation, allows programmers to quickly switch

between the two tasks. The analysis perspective allows programmers to interact

with the provided visualizations (e) by filtering, sorting, and coloring (d). 77

4.3 By looking at the raw data next to the features computed from that data, pro-

grammers can better understand the behavior of their model. Here a program-

mer is shown a thumbnail of movie review data (a). The programmer clicks on

the thumbnail to examine the raw data, features computed from it, and the fact

that it is currently misclassified (b). 80

4.4 In Gestalt, programmers can use faceted browsing techniques to understand

data. Here, a programmer tries to understand why triangles are confused with

rectangles by filtering the full set of examples (a) through a click on a confu-

sion matrix cell (b). The filtered examples (c) show that the confusion is due to

mislabeled data. 81

4.5 The baseline condition is different than Gestalt in three ways: data tables are

not connected across different steps in the pipeline, visualizations are created

using scripts rather than an interactive analysis perspective, and data flow is

represented in files rather than a classification pipeline perspective. 83

4.6 Programmers found and fixed significantly more bugs in the Gestalt condition. 88

5.1 Programmers provide Prospect with the dataset they are trying to understand.

Prospect trains multiple models (based on a set of configurations) to generate

multiple predicted labels for each example in that dataset. Prospect then gen-

erates descriptive statistics about the examples by aggregating those predicted

labels and provides visualizations to allow programmers to explore generated

statistics. 98

5.2 Prospect allows programmers to see the distribution of predicted labels for each

example. Here the nine on the right is correctly classified by all of the configu-

rations, the four on the right is misclassified some of the time. In some configu-

rations it is classified as a nine. This information would be impossible to see by

looking at the results for any given model. 99

5.3 The aggregate confusion matrix groups examples by class much like a normal

confusion matrix. Each row in the confusion matrix shows the distribution of

predictions per class across all of the configurations. 100

v

5.4 The middle image shows the incorrectness vs. entropy plot. To find label noise

a programmer removes low accuracy configurations and inspects examples in

the confused region. 101

5.5 Looking at the confused examples in the unsure region can help programmers

understand their data and create features. Here programmers are looking at a

confusion in the aggregate confusion matrix. 102

5.6 True positive vs. false positive for the three datasets. The incorrectness versus

entropy line corresponds to the confused region. For all of the datasets, false

positives occur inspecting examples within the confused region. 107

5.7 Incorrectness decreases after a new feature is added for examples within and

outside of the unsure region. There is a significant difference for newsgroups

and digits. 109

6.1 Hindsight supports the creation, curation, and execution of multiple alternative

configurations of a classification pipeline. Programmers can construct configu-

rations by combining components. Depending on the component, the logic of

the component can be specified by writing code or using a graphical user inter-

face. As programmers explore different alternatives, Hindsight records a history

and presents an overview to programmers. 118

6.2 Two alternative configurations in Hindsight. The configurations are different,

but do share some common components (i.e., Pixel Features and Evaluation). . 119

6.3 Shows two alternative components with the same input and output types. In

Hindsight, programmers can mix components are purely code with those that

are more interactive. Load Digits provides an interactive sketching interface for

gathering digit data, while load MNIST loads data from a file. 120

6.4 Hindsight allows programmers to look at the differences between both con-

figurations and results. In this figure, Hindsight shows the examples that were

correctly classified in the first configuration and incorrectly classified in the sec-

ond configuration. The ground truth value, predicted value for the first config-

uration, and predicted value for the second configuration are shown on top of

each example. 123

6.5 The diff confusionmatrix shows the number of examples added to and removed

from a confusion matrix cell between configurations. This matrix provides more

information than just looking at the values of each confusion matrix. For exam-

ple, the top left cell (zeros that are classified as zeros) shows that one example

has been added by the second configuration and one has been removed by the

second configuration. The value for the confusion matrix would be the same,

but the specific examples within the cells are different. 125

vi

6.6 Hindsight reuses experimental histories to allow programmers to ask “what if?”

questions about prior experiments. Here the programmer asks, “What if I had

used Load MNIST as my dataset instead of Load Digits?” Hindsight finds all re-

lated configurations, replaces the component, reruns the experiments, and pro-

vides a comparison between old and new configurations. 127

7.1 Gene alignment programs have a similar pipeline structure to classification tasks:

programmers need to be able to edit code and visualize data to iterate on their

problem. The image above shows Hindsight extended to support the gene

alignment problem. There are two working pipelines, the output of which can

be inspected and compared (visualization taken from .NET Bio [8]). 133

vii

LIST OF TABLES

Table Number Page

3.1 The figure above shows the final accuracy of each laboratory participant’smodel,

as well as a plot of the accuracy of each participant’s model over the course of

each two-hour session. 52

3.2 A comparison of the processes of two representative laboratory participants. LP1

makes steady progress by iteratively exploring all portions of the problem, while

LP6 spends that first portion of the study overly focused on feature generation. 55

3.3 A comparison of how well participant’s own tests indicated their models per-

formed, how well they performed on 2000 new test digits, and how many train-

ing examples each participant used. 62

5.1 For all three datasets the area under the ROC curve is higher if both incorrectness

and entropy values are used to find label noise. 106

viii

GLOSSARY

ANALYSIS: the act of understanding the data, the code, and the relationships between the

data and the code.

AUTHOR: to program the behavior of a function by writing code.

CLASSIFICATION PIPELINE: the data flow that is constructed for turning raw data into a model

using a classification algorithm.

FUNCTION: a mapping from inputs to outputs.

IMPLEMENTATION: the act of writing code to define the steps in the classification pipeline and

providing data to train a model.

MACHINE LEARNING PROCESS: the process of training a model using machine learning –

involves the tasks of implementation and analysis.

MODEL: the output of a machine learning algorithm. A model is a function learned from the

data.

TRAIN: to program the behavior of a function (i.e., model) by writing code and providing data.

ix

ACKNOWLEDGMENTS

It is impossible to write this section. There are intangibles at play here, and any attempt to

enumerate and describe the people who have contributed to my success (loosely defined)

will be incomplete. Regardless, an attempt must be made. Here’s mine.

Research doesn’t happen in a vacuum. (That is unless you’re an experimental astrophysicist.)

The people that you surround yourself with play a huge role in both your research and your

development as a human being. I’ve been privileged to be surrounded by some amazing

people.

First, I’ve had the dumb luck of being advised by two awesome human beings (or, at least,

very convincing robots), both named James Anthony, both with PhDs from CMU, both with

a tendency to drink a bit too much at conferences. Under their wings, I have learned how to

be passionate about a problem, how to think big, how to decompose big ideas into

manageable pieces, and how to hold my liquor.

James Fogarty has a rare gift among academics: the ability to listen. It allows him to absorb

half-formed ideas and understand the insights behind them, and it allows him to take

criticism from his students and change his behavior. It makes the students who work with

him feel like they are working with a true collaborator instead of a boss. Listening requires

both patience and humility – you have to check your ego at the door. James’s ability to

listen is a skill I both admire and envy.

James Landay has taught me to look at the big picture and to take risks. Landay invests in

people rather than ideas (at times to his detriment). He took a risk on me, allowed me to

explore ideas, and invested heavily when I found a hard problem that I was passionate about.

He doesn’t let his students sell themselves short and will never pull punches. He protects his

students’ interests, and he fights tooth and nail for them. This is a profoundly unselfish act,

especially in a business that encourages you to push your intellectual agenda above all else.

x

The folks on my dissertation committee have provided sage advice over the years. Steve

Drucker proves that you can be both a successful researcher and the nicest person in the

world. Andy Ko has forced me to focus my ideas though his socratic advising style and

insistence on precision. I’ve taken advantage of David Notkin’s open door, comforting words,

and superhuman empathy in many times of angst. Dan Weld has lent me his immense

intellect in times when I needed to detangle my thoughts.

During my time at the University of Washington, I have had the pleasure of working with a

number of great researchers on a variety of cool projects. I’d like to thank my co-authors

Saleema Amershi, Naomi Bancroft, Mike Chen, Steven Drucker, James Fogarty, Susumu

Harada, Beverly Harrison, Raphael Hoffmann, Ashish Kapoor, Andy Ko, James Landay, Jon

Lester, Scott Saponas, Ian Smith, Desney Tan, Dan Weld, and Fei Wu. I have enjoyed tackling

hard problems, sharing ideas, and building solutions with you.

Most folks will tell you that your peers, the people in your research group, can be more

instrumental than your advisors at helping you develop intellectually. Being around smart

people makes you smarter, and as part of two talented research groups, I’ve had the privilege

of being around very smart people. In the Landay group, I found a cohort of young students

eager to build a vibrant HCI community. I’d like to thank Kate Everett for keeping Landay

meetings on track; Jon Froehlich for his charisma, aesthetic sense, and willingness to teach a

young grad student how to build a GUI; Susumu Harada for providing a shining example of

both staggering humility and exceptional research talent; Scott Saponas for his corny humor

and big heart; and Michael Toomim for his creativity, passion, and willingness to shirk the

system.

The Fogarty research group was a different beast. As an older student, I was able to see

young students enter and grow. It was a great experience. I’d like to thank Saleema Amershi

for going on adventures with me and not killing me when we decided to work together;

Morgan Dixon for being a good (read: non-alcoholic) influence on conference trips, for

running 6 miles around Greenlake, and for his unpretentious approach to handling success;

Katie Kuksenok for her energy and eccentricity; and Ryder Ziola for his precision and humor.

There are also older students outside of my research groups who have been instrumental in

guiding me through the years. I would like to thank Eytan Adar, Jeff Bigham, Krzysztof Gajos,

xi

and Adrien Treuille for being great role models and for providing great advice.

No UW CSE acknowledgements section would be complete without mentioning our

amazing support system. Lindsay Michimoto keeps students sane. Although Hank is the

chair, we all know that Lindsay is in charge. She is an amazing advocate for students. Lindsay

is a large part of what makes UW awesome. Melody Kaneno shelters us from bureaucracy, so

we can spend more time goofing off. Conveniently, she can also be paid in chocolate.

My relationship with my roommates has been a large part of my Seattle experience. I prefer

to think of them less as roommates and more as family. I’d like to thank Ben Birnbaum for

being just a little bit sad, a lot a bit awesome, and showing me that success is not a shackle;

Jonah Cohen for challenging my beliefs, keeping an open mind, and pushing me to face my

fears; Joe Devietti for being willing to do stupid things like stair workouts at 6am on

Saturdays; John John for being inhumanly easy going and providing entertainment and

perspective; Travis Kriplean for listening, unravelling my stress, and guiltily sleep-eating my

almond butter; Yongjoon Lee for late night Taco Bells trips followed by even later night

Starcraft matches; and Susumu Harada for hilarious moments of confusion and inspirational

moments of kindness. Roommates, in general, have been critical in my development. Much

of where I am today is a product of random chance. Gilman Tolle, my freshman year

roommate, has left a large imprint on on my personality. I had the luck of rooming with one

of the smartest computer science students at Carnegie Mellon for four years. My interest in

HCI, my intellectual curiosity, and my echoing laugh are all stolen from Gil.

My support network in Seattle goes extends far beyond my research group and roommates.

There are too many folks to credit, and I will inevitably forget some. If I do forget you, I

apologize. I still love you; don’t be sad.

The networks lab (Mike Piatek, John John, Tomas Isdal, and Dan Halperin) has given me their

friendship, an outlet for nerdiness, and a reliable source of lunchtime company. My running

and workout groups (Ben Birnbaum, Tomas Isdal, Christoffer Klang, Alex Jaffe, Jo Crook-Barr,

Abe Friesen, Yaw Anokwa, Joe Devietti, Travis Kriplean) have transformed me from a scrawny

nerd to a scrawny nerd that can run fast and lift heavy things. Not only did the exercise keep

me sane, but the workouts also provided me with amazing memories. Running through

Wallace Falls is one of my favorite memories from grad school.

xii

Folks don’t fit neatly into buckets, sometimes you have to shove and push to really get them

to fit. I thought it might be easier to single some folks out. Alexander Jaffe and Nodira

Khoussainova have had a six-year close-up view on my evolution as a person through grad

school. There are large spans of time where I saw them every single day. I’m sure they’re

sick of me by now. Through the years, they have seen me through a number of broken

hearts, helped me cope with crushing failure, and celebrated my successes. They have kept

me grounded, and without them this process would have been far more difficult. Jennifer

Klein has become an extension of my biological family, bravely attending two Indian

weddings. Her open ear and logical mind have changed the way I live my life. Latika Kirtane

has acted as a proxy for Amee, my sister. She has tied my rakhis and provided me with a

limitless well of positive energy. Mike Piatek has provided a shining example of how to fight

momentum and make decisions based on happiness. Yaw Anokwa has committed treason

and dragged a severely intoxicated version of myself through the streets of Berlin all in one

night. In a sea of couples or single men who have given up, Abe Friesen has been an

invaluable resource for discussing single guy issues. Elizabeth Tseng has inspired me with

her broad talents. Ian Simon has lent me his infectious idealism and love for crosswords.

Rishi Sanyal has inspired me with his intense, and at times, insane, obsession with his art.

Shaheen Gandhi has shared his passion for making cool things that people use. Jo

Crook-Barr has motivated me to be a better person with her frightening, yet lady-like,

physical strength, strong sense of purpose, and laser-like focus. Eva Ringstrom has provided

a steady source of delicious food and delightful company. Paul Pham has shared a common

struggle with balancing western and eastern values and has tamed large elephantine

vehicles. Emily Jacobson and Alexis Hope have been a firehose of wonderfully

uncomfortable situations and willfully awkward moments. Justine Sherry has enriched my

life by living in my computer, reading me bedtime stories, and just plain telling me nice

things. Drew Perdichizzi has seen to it that my body doesn’t fall part. Michael Bernstein has

been a constant source of support through this painful job hunt process.

I’d like to thank everyone that went out of their way to help me during this long thesis

writing process. Thanks to Didi Isdal for calming me down, making me dictate parts of my

thesis, and transcribing what I said. Thanks to Yaw Anokwa, Seema Patel, Amy Ferris Wheelis,

Gilman Tolle, KC Oh, Elisa Celis, Danielle Kulp, Rishi Sanyal, and Sam Kaufman for debugging

xiii

my writing. Amy actually read my entire thesis, which makes her the first non-advisor to

read it. Hopefully it wasn’t too scarring.

Of course, where would I be without the Seattle coffee shops. I have spent most of my grad

life “working” in cafes. I will miss that culture dearly. Thank you to Remedy Teas, Pioneer

Coffee, Victrola, Trabant, Milstead, and Zoka.

None of this research would be possible without generous funding from the American

taxpayer. I’d like to thank the National Science Foundation for funding through grants

IIS-0812590 and OAI-1028195 and the Army Research Office for funding through the NDSEG

fellowship. I’ve also been the beneficiary of generous corporate support in the form of gifts

from Google and Microsoft and also the Microsoft Graduate Research fellowship.

Finally, being in grad school is a incredibly selfish act. You can, if you choose, remove

yourself from the concerns of the real world and work on problems you find interesting, for

no other reason than because you find them interesting. The motivations behind such a life

choice and the consequences of it can be hard for many families to understand, especially

Indian families. My parents and sister have been extremely supportive. Without their support

and guidance none of this would be possible. Thanks Mom, Dad, and Amee!

xiv

1

Chapter 1 | INTRODUCTION

Computers are everywhere. Desktops are on most every desktop. Computers keep track of

critical systems in cars and airplanes. They connect us to the world through our cell phones

and tablets. When we come home, looking for entertainment, we use the computers in our

televisions and video game consoles. But computers by themselves are just machines that

process instructions. For a computer to do anything it needs instructions to execute. It

needs a program.

A program instructs a computer how to behave, how to process instructions. For this

dissertation, I focus on a specific programming task: writing a function. A function maps

inputs to outputs. Programming is the process of specifying this function.

One way of programming a computer is by authoring a function through code. When

authoring behavior, programmers design a function and write code to provide a computer

with the exact instructions on how to map inputs to outputs. Consider the scenario where a

programmer is trying to author a function that sorts a list of names. There are many ways

they could do this. For example, they might manually specify the operations needed to

reorder the list of items. Or they might find a library that contains a function that sorts the

list. In either case, the programmer can reason about the preconditions and postconditions

of the function. They know what will happen when they apply their sorting program to a list.

If the function doesn’t behave as expected, it’s because there is a bug in the code. Either the

2

programmer or the creator of the library didn’t describe the function correctly.

Authoring behavior is the most common way to program a computer. And it’s important:

there are encyclopedias worth of code powering widely used tools like Microsoft Office and

Adobe Creative Suite. As a consequence, research and industry have focused on

understanding and supporting programmers as they write, edit, debug, and share code.

Tools such as integrated development environments, code versioning systems, and

debuggers have lowered the barrier to programming.

However, authoring behavior is only one way of specifying a function. There are useful

functions that can’t easily be specified manually through code. Consider the scenario where

a programmer wants to create a function that takes speech input, recognizes that input, and

outputs text. Speech input varies and is greatly influenced by outside factors (e.g., the

speaker, recording equipment, recording environment). Programmers can’t write robust

code to account for all of these variations, but they can observe the input space to collect

examples of speech. They can leverage their knowledge about what aspects of speech input

might be used to distinguish between inputs and encode that knowledge in a form a

computer can understand. They may even be able to provide sample outputs, in the form of

corresponding text transcripts, for each input they observe. The computer can use all of this

information to learn its own function.

To create these functions, programmers and computers need to work together. The

computer needs the programmer to collect observations and write code to provide

descriptive information about those observations, and the programmer needs the computer

to use this information to find patterns. In the literature, observations are referred to as data

and functions built from data are called models. In contrast to functions created by

programmers authoring behavior through code, these functions are created by

programmers training a model and computers learning a model through data and code.

When authoring behavior, programmers often have a design specification in mind. This

specification outlines the desired behavior that is possible to achieve with the right code. If

the function doesn’t behave as desired, programmers can change the code to fix the

behavior. Training a model introduces new challenges. These challenges stem from the fact

that the behavior of the model is not solely determined by the code – it is determined by

both the code and the data. If the learned function performs poorly, it might be that the data,

3

algorithms, and computational resources are not sufficient to solve the problem. For

example, in speech recognition, state-of-the-art systems still fail when applied to difficult

data.

These challenges change the way functions are programmed. Unlike authoring, where a

programmer can simulate behavior in their head or trust a black box implementation from a

library, training involves running experiments to understand what the computer has learned.

Programmers experiment by changing data and code to see if it is even possible to build a

function that behaves the way they want it to.

Little work has been done to understand the programming process for training models, and

tool support for training a model lags far behind support for authoring a function. In this

dissertation, I study the programming process for training models, focusing on the use of a

specific set of techniques known as machine learning algorithms. I refer to the programming

process for training models using machine learning as the machine learning process.

In the next section, I describe machine learning and focus my discussion on a specific set of

algorithms called classification algorithms. Programmers train models using classification

algorithms by providing examples of inputs and outputs. I then provide a scenario in which a

programmer uses classification algorithms to train a model that recognizes handwritten

digits. I use this scenario to explore the differences between authoring a function with code

and training a model with code and data. I then present my thesis statement and provide an

overview of my dissertation, describing at a high level the studies I have run and the tools I

have built to support my thesis.

1.1 Machine Learning
Machine learning is a discipline that focuses on programming functions by showing them

how to behave through examples of data. A machine learning algorithm describes a

computational process through which a computer models data. The learned model is a

function from inputs to produces outputs. Tom Mitchell provides a well-posed definition of

what it means for a computer to learn [96]. He says: “A computer program is said to learn

from experience 𝐸 with respect to some class of tasks 𝑇 and performance metric 𝑃, if its
performance at tasks in 𝑇, as measured by 𝑃, improves with experience 𝐸.”

To train behavior, a programmer first conceives a task that they want the computer to solve.

4

For example, the programmer may want the computer to recognize speech and transcribe it

to text. They then provide the computer with examples of experiences. These examples are

commonly called data. Data is an observed proxy for a behavior related to the task. For the

speech transcription task a programmer would collect audio files containing speech with

associated transcripts. The data shows the computer what it should be doing. Machine

learning algorithms detect patterns in the data to build a model. The usefulness of that

model is assessed through a performance metric. In the speech transcription example this

metric would be how well the system recognizes speech.

Programmers must concretely define experiences, tasks, and performance metrics for their

problem. The way a programmer defines a problem determines which algorithm they

should use. For example, programmers typically solve speech transcription problems using

supervised learning algorithms. The programmer provides the supervised algorithm with

inputs in the form of examples and supervision in the form of outputs. Supervision itself can

be subdivided into discrete outputs (i.e., classification) and continuous outputs (i.e.,

regression).

There are problems for which the programmer may not know the outputs ahead of time or it

may just be difficult to generate credible outputs. For these problems programmers are

looking for patterns – if certain examples group together. For instance, a programmer

working with user activity logs may want to group similar users together to understand their

usage patterns. These problems are known as unsupervised learning problems because

programmers are not providing any additional information, or supervision, about the output.

These problems are commonly addressed using clustering algorithms.

The space of machine learning algorithms expands past classification, regression, and

clustering. Reinforcement learning algorithms rely on a different representation in which

programs perform actions in the world and evaluate the consequences of those actions to

learn the right model. Hybrid techniques combine aspects of different algorithms. Machine

learning itself provides a rich set of different approaches for training models.

In this dissertation, I focus on classification algorithms. Training behavior through

classification is straightforward. The programmer provides examples of both inputs and

outputs to the function, and the computer learns a mapping between inputs and outputs.

This technique is incredibly powerful. Companies like Google, Yahoo, and Microsoft use

5

classification to learn models of spam and non-spam email to remove spam emails from

inboxes [116]. Biology researchers use it to recognize patterns in the human genome [37].

And the U.S. Postal Service (USPS) uses it to route physical mail by automatically recognizing

the handwritten address on an envelope [85]. To understand the process of training a model,

we can take a closer look at the last scenario, handwriting recognition.

1.2 Scenario: Routing Physical Mail
Hundreds of millions of boxes, envelopes, and postcards move through USPS sorting centers

each year. Each piece of mail needs to get to a destination address. Before 1994 routing mail

was a manual process: a human had to inspect the handwriting on each package. The

automation of this process is noted as a huge success for machine learning, and has greatly

increased the efficiency of the postal service.

The systems that the USPS uses today recognize the entire address, but initial systems

focused on the simpler problem of recognizing a handwritten zip code. Each address can be

geographically localized by looking at its zip code. This five to nine digit number helps the

USPS route mail efficiently. Looking at how a handwritten digit recognition system is built

provides insight into differences between training behavior and authoring behavior.

Figure 1.1 shows the entire handwritten digit recognition system. Training a model is just a

small part of the overall system, but it is influenced by the needs and constraints of the

system. The effectiveness of the classifier also influences how the system is designed. To

ground the new concerns raised by training a classifier and the dependencies between the

model and the rest of the system, let’s observe the steps Ada takes to train a handwritten

digit classifier.

Gather Data and Define the Problem

Training a model requires both code and data. Before Ada can use a classification algorithm

to learn a function, she must have examples of the inputs and outputs. The first step is to

create a digital representation for physical artifacts. Ada digitizes mail by scanning the

handwritten address and converting it into a image file. Next she needs to find the zip code

in the image. Finding the zip code can be a difficult machine learning problem itself, but for

the purpose of this scenario let’s assume Ada has such a system. At the end of this process

Ada will be left with a digital representation of the zip code for each piece of mail.

6

zip$code
routing$system

mail zip'code

dataset

label$data

train&handwriting&model

segmented'
digits
dataset

segmented'
digits

model

apply$
model

low'
confidence

+
-

+
-
++
+ +

--
--

31 2 13 23
12 79 0 3
32 13 10 21
1 7 6 72

10014

evaluation

+
-

+
-
++
+ +

--
--

modelfeature$generation

physical&mail&to&digits&

find$
zip$code

segment

verification

high'
confidence

Figure 1.1: Training a model is just part of the process of building a handwritten digit

recognition system. The dashed lines show the steps involved in training a model. The

solid lines show the steps involved in applying the model. Note there is overlap in trans-

forming physical mail to digits.

7

Ada must now clearly define the problem she wants the classifier to solve. This can be a

complex choice. For instance, Ada may choose to recognize the entire zip code, or she may

choose to further subdivide the problem by segmenting the zip code into component digits.

Segmentation is another processing step, but in practice it reduces the complexity of the

classifier and produces robust results. Ada segments her image, and the classification

problem is now reduced to recognizing a single handwritten digit.

Ada now has a function that gets digital images from physical mail. But she does not yet

have a dataset which she can use to train a model. To create a dataset Ada uses her system

to scan thousands of envelopes to gather tens of thousands of digit images. Since

classification is a supervised technique, Ada provides an output for each input. This means

she must provide the ground truth number for each digit image in her dataset. Generating

ground truth outputs for inputs is called labeling data, and it often requires human labor. Ada

labels her dataset by paying people to look at digit images and label each image with its

corresponding digit.

Generate Features

After labeling data, Ada finally has the set of inputs and outputs she needs to train a model.

However, the inputs are not yet in a form that most classification algorithms can understand.

Ada needs to describe image attributes that can be used to distinguish between different

digits. This process is called feature generation. Features are numerical, nominal, or relational

values used by the classifier to find patterns in data.

Train and Evaluate a Model

After Ada has generated features, she can train a model using a classification algorithm. She

needs a metric to understand how evaluate the model. Ada chooses to evaluate the digit

recognition model by measuring accuracy. She splits the dataset into testing and training

sets. The training set will be used to train a model, and the testing set will be use to see how

well the model works. To simulate the effectiveness of the model on new data, Ada ensures

that the training and testing sets do not overlap. After she has set up this experimental

framework, Ada can try a variety of different classification algorithms and compare their

accuracies.

8

Test and Iterate

Ada finds that her first attempts to build a model don’t work well; the models have low

accuracy. In the process of improving performance Ada generates new descriptive features.

She analyzes her data to make sure it is a good sample of handwritten digits and collects

more data to account for any discrepancies. She debugs her machine learning code to

remove errors in the implementation of the algorithm.

Once she is happy with the accuracy, she plugs her handwritten digit recognition model into

the larger automated mail routing system. After interacting with the production system, Ada

realizes she will not be able to build a perfect classification system – handwriting data in the

real world is too varied. This means there will be instances where the classifier will fail, and

the real system needs to be able to handle those cases. She modifies the model to provide

confidence measurements for each prediction, and she modifies the routing system to add

an extra human verification step for predictions with low confidence.

The construction of the handwritten digit recognition system is more complicated than just

choosing an algorithm and training a model. Ada makes a number of decisions along the

way, decisions about how to collect, process, and model data as well as how to test the

model and account for prediction errors real production systems. These decisions not only

effect the accuracy of the model, but they also affect the design of the final mail routing

system. However, there is structure in the programming process. By looking at how Ada

programs the handwritten digit recognition system, we can better understand and support

training behavior through data.

1.3 The Programming Process
The machine learning process is different than coding. The key difference is the addition of

data as a key ingredient in defining how a trained function processes information. This

means that if the handwriting recognition model is working poorly, the source code may be

flawless and the problem could likely be solved by providing better data.

Since the behavior of the model is based on data, all of the steps involved with gathering and

processing the data affect the behavior of the program. There are a number of different

steps, and each step can have errors. In the handwritten digit recognition scenario above,

the transition from physical mail to labeled is a multi-stage process. Ada gathers digital

images of addresses from physical mail, localizes zip codes, segments zip codes into digits,

9

and labels digits. Additionally, Ada must ensure that her training data is representative of the

data her function will encounter in the real world. She also needs to make sure that her

testing data is separated from her training data to simulate real world distributions of data.

Errors in any of these decisions have downstream effects on the performance of the model.

Code is as important as data. Programmers still need to write code. In the handwritten digit

example, Ada writes code to localize and segment zip codes, generate features from data,

train a model using a classification algorithm, and run and track experiments. Interactions

between the data and code can lead to bugs in non-obvious locations. For example, address

images gathered with slightly different cameras may reveal a bug in zip code segmentation.

Ada must be willing and able to revisit all of the code.

Given the complexities and error prone nature of the process one might wonder – why even

bother with machine learning algorithms? Ultimately Ada has no other choice; a machine

learning approach is the only realistic way of dealing with the complexity of handwritten digit

recognition. Due to the sheer number of different ways to write digits, Ada cannot manually

build an effective model. And because certain digits can often look very similar (e.g., fours

and nines) the computer cannot easily classify the data with accurately. The fact that neither

the computer or Ada have a complete and correct model means they have to communicate

their partial knowledge of the model to each other in order to train a good model.

Communication between the programmer and the computer happens through many

different channels. The programmer communicates through data and code, and the

computer communicates by providing a model and experimental results. In the example

above, Ada communicates inputs and outputs through labeled digits, how to tell digits apart

through feature generation code, how to build a model through classification algorithm

code, and how to tell if a function is good enough through code that splits the data into train

and test sets and evaluates the performance. The computer communicates what it has

learned by providing a model and predicted labels for digits in the test set.

Ada tries to improve the function through experimentation. She changes the data and code

to see if she can improve the performance based on her current understanding of the

learned model’s limitations based on previous predictions. The computer provides new

predictions based on those changes. For example, Ada provides new digit data, and the

computer provides an increased accuracy score letting her know that the new data helped it

10

train a more accurate model. It is through this process of experimentation, that both Ada and

the computer build a better model of the data.

The machine learning process is different than the process for authoring a function.

Algorithms can no longer be treated as black boxes, and programmers can’t be expected to

model the problem in their head. It is a process defined by code, data, and experimentation.

It is a data-oriented programming process. The bulk of this dissertation focuses on

understanding and supporting the machine learning process.

My studies show that many experienced programmers have a hard time using machine

learning algorithms because they are not familiar with the machine learning process.

Current general-purpose programming current tools are not designed to support this

process. Integrated development environments (IDEs) support writing, debugging, and

managing code, but provide little to no support for data. Current machine learning support

for programmers still focuses mostly on the coding aspect of the process. For example,

machine learning APIs reduce the coding burden by providing libraries of algorithms but do

not help the programmer manage data [137].

My thesis focuses on supporting machine learning programming through better

general-purpose programming tools. I do this by building tools that support the machine

learning process, a programming process that uses both code and data to create a program.

To this end, I have run studies and created new development tools in support of my thesis:

The programming process of using machine learning to train a model is

different than the programming process of authoring a function through

code and is poorly supported by current general-purpose programming

tools. We can better support machine learning though new programming

tools that support writing code and understanding data.

1.4 Outline
The dissertation will be organized as follows:

Chapter 2 describes related work. Machine learning programming involves writing code and

providing data to train a function and conducting experiments to see how well the function

works. I cover related work that supports writing code, working with data, and conducting

experiments. I also cover current machine learning tools and compare them to my approach.

11

Chapter 3 describes my initial studies of machine learning programming [110]. I describe and

provide results from two studies. In the first study, I interviewed researchers applying a

variety of machine learning algorithms to a diverse set of domains. From these interviews I

extracted a general programming process for machine learning that I call the machine

learning process. I ran a second study to observe the machine learning process in a

laboratory study. I use these two studies to describe the machine learning process and how

current programming tools fail to support this process. I focus my development support on a

specific subset of machine learning, classification.

First, I explore how a new programming environment designed around the machine learning

process can better support classification. Chapter 4 presents Gestalt [108]. Gestalt helps

programmers train classifiers by connecting code to data. Gestalt supports organizing,

editing, and writing code. Programmers can interact with data by visualizing datasets and

looking at connections between classification results and examples in the dataset. My

studies show that programmers are better at debugging a trained function with Gestalt than

with a state-of-the-art general-purpose programming tool.

I build on my work on Gestalt, by looking at how new analysis tools can help programmers

understand limitations of their datasets. Chapter 5 describes Prospect [109]. Prospect

automatically generates many different configurations of features, classification algorithms,

and evaluation techniques. These configurations are used to train multiple models for the

same dataset. Each model provides a predicted value for an example in the dataset.

Agreement between models is used to generate new interactive visualizations, which in turn

help programmers better explore and understand their dataset. I show how these

visualizations can be used to help programmers find noisy examples in their dataset and

create more descriptive features.

Finally, I look at how new programming tools can support experimentation, which is a key

part of the machine learning process. Chapter 6 describes Hindsight. As programmers

change parameters and datasets they leave an experimental trail. Tracking these changes is

an important but difficult task. Hindsight uses the structure of a classification problem to

automatically track changes and associate them with results. It allows programmers to

compare experiments to better understand how changes in parameters and code change

results.

12

I close by providing examples of how this work might be extended and conclude my

dissertation in Chapter 7.

13

Chapter 2 | RELATED WORK

Training a model can be broken down into three high-level tasks. First, programmers write

and manage code to create a data flow. Second, they collect, store, and analyze data. This

data provides learning algorithms with training examples, which are used to train a model.

The data also helps programmers understand the behavior of the model. Third,

programmers run experiments by changing code and data to explore the space of possible

models. The purpose of this experimentation is to find a particular model that works well for

their problem.

There is a rich history of related work for each of these tasks. Researchers have studied

programmers and have built tools for writing and understanding code, analyzing data, and

supporting experimentation. The first three sections of this chapter will survey the wide

range of work in these three areas, and will compare existing solutions to my own work. The

last section will survey tools that have been specifically designed to support machine

learning and will contrast those tools with the tools that I have built.

2.1 Writing and Managing Code
In order to train a model, a programmer has to create a data flow. This flow describes the

computational transformations that take raw data and turn it into a model. The flow can

consist of multiple steps: parsing data files, fusing different data sources together to create a

dataset, extracting features from the dataset, and training a function based on those features.

As is true in any other programming task, programmers will make mistakes when creating

14

this data flow. These mistakes lead to bugs in the control flow of the code (i.e., incorrect

instructions executed by the computer). Understanding the control flow is important for

fixing these bugs. In this section, I describe related work on creating, managing, and

understanding a data flow.

2.1.1 Creating a Data Flow

The high level control flow of many programs can be represented as a data flow. A data flow

is a graph where each node is a piece of computation, and data flows along the edges.

Sutherland provides an early example of how such a system might work [128]. Sutherland”s

system allows programmers to enter arithmetic instructions using two different

representations: textual code and visual data flow graphs. Both representations lead to the

same result, but the data flow representation decomposes the problem into a form that is

easier to interpret.

Interpretability is just one of many reasons why research and industry have exhibited

continued interest in data flow programming [68, 139]. Because the computational flow is

explicitly represented as a graph, programmers can use graph analysis algorithms to find

independent components and execute those components in parallel for improved

performance. Data flow representations also provide built-in modularity, because the graph

structure allows programmers to easily swap out components that have the same types.

Researchers have frequently exploited the visual nature of the data flow to build better

programming tools. Visual languages derived from data flow development are popular in the

end-user programming community, where they are used to make programming accessible

to people without experience writing textual code [139]. Modern programming tools like

Visual Studio [7] and Matlab [10] include some support for visual data flow programming.

Prograph provides a vision of what a general-purpose visual programming language might

look like [36].

Data flow programming tools are effective for programming tasks where the workflow has a

natural graph structure, such as science and engineering. Scientific workflow systems such

as Taverna [105], VisTrails [30,31, 119, 120], and Kepler [89] provide support for a variety of

data intensive tasks in a variety of scientific domains (e.g., gene-alignment in bioinfomatics,

wild-life tracking in ecology). Such workflow tools have seen commercial success in systems

such as LabView [25]. Data flow programming tools like Rapid Miner [93] and Knime [24]

15

extend this type of support to machine learning.

My tools build on top of this work. Gestalt and Hindsight are both general-purpose

development environments that support the construction of a data flow pipeline. Unlike

Prograph, the graphical structure in Gestalt and Hindsight is not meant to replace coding.

Programmers still need to write code. Rather, like LabView, I take a hybrid approach by

allowing programmers to mix both imperative and graphical programming. Unlike LabView,

which looks at the data flow as the key programming component, my tools look as the data

flow as an organization aid – a rough scaffold upon which code can hang. This distinction is

important. Gestalt and Hindsight place programming front-and-center to prevent the data

flow from getting in the programmer’s way, which ensures that the tools remain flexible

enough to address new problem domains [100]. The data flow scaffolding allows these tools

to support programmers who are training a domain-specific model, while still taking

advantage of the improved modularity provided by a data flow language.

2.1.2 Debugging a Control Flow

Program errors are as old as programming itself. Ada Lovelace, regarded by many to be the

first programmer, reflects on the process of programming when describing Charles

Babbage’s revolutionary computing machine, the Analytical Engine:

an analyzing process must equally have been performed in order to furnish the

Analytical Engine with the necessary operative data; and that herein may also lie

a possible source of error. Granted that the actual mechanism is unerring in its

processes, the cards may give it wrong orders.

Ada Lovelace recognizes that the computer is working properly – it is properly executing

instructions provided by the programmer. Rather than the machine, the errors are result of

poorly constructed “orders” or bad code [88].

As programming matured, new techniques were created to help programmers debug code

by understanding the control flow of a program. Techniques like assertions allow

programmers to place a loose contract between the inputs and outputs of functions as they

write code [60]. Programmers can assert preconditions and postconditions to functions, and

the program will halt with an error if those assertions fail during runtime. Printing values to

the console allows programmers to debug the control flow by tracing the execution path of

the program and logging relevant information. Debuggers allow programmers to control the

16

execution of a program [113]. Programmers can stop the program at specific breakpoints and

inspect its state. Graphical user interface debuggers make this task even easier. These tools

allow programmers to specify breakpoints by clicking on a line of code and using interface

widgets to view relevant state, such as active variables and the execution stack.

Understanding how programmers make mistakes can inspire new interfaces that help them

avoid errors. This is a key motivation for programming studies, and in particular, studies of

programming errors. In The Errors of TeX, Don Knuth reviews and categorizes all of the

programming errors and enhancements he made while creating the TeX layout engine [74].

Knuth concluded that knowing about what kinds of errors he makes didn’t help him avoid

future errors. To Knuth, making errors was part of the process. Making these errors provided

him with experience and helped him better understand his program. In undertaking this

study, Knuth learned that he will always make errors and that he must “strive energetically to

find errors in [his] work.” Errors will always exist, but tool support can make finding errors

easier and less painful.

Knuth’s study is one of many studies that seek to understand programming errors. Ko and

Meyers survey these studies and develop a framework for studying both the programmer

and the programming system together [75,77]. Based on this framework, Ko and Meyers

develop a methodology for studying programming breakdowns. They use this methodology

and framework to study the Alice programming system. This study showed that

programmers systematically form bad hypotheses about why the system is behaving the

way it does, and found that these bad hypotheses were at the root of 50% of the errors

observed in their study of Alice.

These studies led to new tools, such as the Whyline for Alice [76]. The Whyline allows

programmers to ask “why did?” or “why didn’t?” questions about their program in order to

understand its behavior. Figure 2.1 shows an example of a question asked by programmer

trying to understand why their 3D object didn’t change size. In the Whyline, programmers

formulate questions by selecting options from a drop-down menu. These questions are

grounded in the output, inducing programmers to ask questions when the output doesn’t

match their expectations. In a user study, programmers found that output-based question

asking was both useful and intuitive, and they were able to greatly reduce debugging time

when using the Whyline. The Whyline has been extended to support end-user debugging in

deployed applications [102], in Java development [78], and in end-user debugging of

17

supports exploration and diagnosis by increasing questions’
visibility and decreasing the viscosity of considering them.
Because Ellen expected Pac to resize after touching the
ghost, she selects why didn’t Pac… and scans the property
changes and animations that could have happened. When she
hovers the mouse over a menu item, the code that caused the
output in question is highlighted and centered in the code
area (see Figure 3). This supports diagnosis by exposing
hidden dependencies between the failure and the code that
might be responsible for it. This also avoids premature
commitment in diagnosis by showing the subject of the
question without requiring that the question be asked.

The Answer
Ellen asks why didn’t Pac resize .5? and the camera focuses
on Pac to increase his visibility. The Whyline answers the
question by analyzing the runtime actions that did and did
not happen, and provides the answer shown in Figure 4. The
actions included are only those that prevented Pac from
resizing: the predicate whose expression was false and the
actions that defined the properties used by the expression. By
excluding unrelated actions, we support observation and
hypothesizing by increasing the visibility of the actions that
likely contain the fault. To support diagnosis, the actions’
names and colors are the same as the code that caused them.

This improves consistency and closeness of mapping with
code.
The arrows represent data and control flow causality.
Predicate arrows are labeled true or false and dataflow
arrows are labeled with the data used by the action they
point to. The arrows support progressive evaluation, and
thus hypothesizing, by helping Ellen follow the runtime
system’s computation and control flow.
Along the x-axis is event-relative time, improving the
closeness of mapping to the time-based Alice runtime
system. Along the y-axis are event threads: this allows co-
occurring events to be shown, supporting juxtaposibility.
Ellen interacts with the timeline by dragging the time
cursor (the vertical black line in Figure 4). Doing so
changes all properties to their values at the time represented
by the time cursor’s location. This supports exploration of
runtime data. When Ellen moves the cursor over an action,
the action and the code that caused it become selected,
supporting diagnosis and repair. These features allow Ellen
to rewind, fast-forward, and even “scrub” the execution
history, receiving immediate feedback about the state of the
world. This exposes hidden dependencies between actions
and data that might not be shown directly on the Whyline,
and between properties’ current values and program output.

Figure 4. The Whyline’s answer shows a visualization of the runtime actions preventing Pac from resizing. Ellen uses the
time cursor to “scrub” the execution history, and realizes that Pac did not resize because isEaten was true.

CHI 2004 ʜ Paper 24-29 April ʜ Vienna, Austria

 Volume 6, Number �

154

Figure 2.1: The image above shows the result of asking a question about the program’s

behavior in theWhyline. The question is displayed below. TheWhyline highlights both the

code and the objects in the 3D environment related to the question. It also visualizes the

set of instructions that led to the current state. This visualization provides the programmer

with a straightforward way of backtracking to find the cause of the error.

18

deployed models [82].

While useful, the extension of Whyline to machine learning targets a different problem than I

do [82]. Whyline is targeted towards end-users debugging deployed models in applications

and is constrained to fit the algorithm decisions for a specific system in the context of a

specific problem domain. The Whyline doesn’t provide general-purpose support for training

a model. I discuss differences between my tools and existing tools for machine learning in

more detail in Section 2.4.1.

Although I do not strictly follow the methodology prescribed by Ko, my studies and tools are

influenced by his programming studies [75,77] and his work on Whyline [76,78]. In my

studies, I construct a similar task, designed to observe programmers as they train a model

with current tools. This study reveals problems with existing tool support, including

problems debugging trained models when the behavior of the model does not match

expectations. These problems inform my subsequent work on general-purpose tools for

training a model using machine learning.

I also draw inspiration from Ko’s studies of programming barriers experienced by novice

programmers using traditional programming tools [79]. In this study he discusses barriers

faced by novice programmers when they are learning how to program. One such barrier

described by Ko is an understanding barrier. Understanding barriers occurred when a

“novice could not evaluate the program’s behavior relative to expectations.” Since they didn’t

understand why the program behaved the way it did, novice programmers could not fix

errors.

Because most programmers are novices when it comes to using training a model, there are

parallels between novice programmers trying to author a function and novice machine

learning users trying to train a model. For example, programmers also experience

understanding barriers when their trained model performs poorly. My studies show that

most programmers don’t have the mathematical background needed to understand how a

machine learning algorithm converts data into a model.

Programmers need new tools for understanding the behavior of trained models. Authored

functions have few data dependencies. This means that that it is feasible for the programmer

to interact with dependency chains. Tools like the Whyline can exploit the fact that there are

few data dependencies in authored programs. For example, the program in Figure 2.1 only

19

has four data dependencies. In contrast, trained models are dependent on large datasets;

they have thousands of data dependencies. Programmers can’t directly understand all of

these dependencies, so they must run experiments to focus their attention on the most

important dependencies (e.g., misclassified examples). My tools support programmers by

supporting experimentation and highlighting the specific data dependencies that are the

most valuable to inspect.

2.2 Analyzing Data
The behavior of a trained model is based on both code and data. If a programmer provides a

machine learning algorithm with bad data, the algorithm will produce a bad model.

Debugging a trained model involves debugging data, and debugging data involves

understanding the dataset being used to train the system, the learned model, and the

experimental results. In order to understand the relationships between data and code,

programmers make heavy use of visualizations, charts, and graphs. Researchers have studied

how people understand data and have built tools that help people better understand data

through visualization and analysis. In this section, I cover related work in three areas:

sensemaking and interactive visualizations, programming support for visualization, and

visualization support for specific machine learning algorithms.

2.2.1 Sensemaking and Interactive Visualizations

Sensemaking is the process by which people understand data [39]. In the human-computer

interaction literature, Russell et al. frame sensemaking as a learning loop in which people

search for representations of their data, instantiate those representations, and shift

representations based on new data [115]. People then use the generated representations to

solve a problem they are working on. Russell provides a framework for analyzing the cost

structure of this process. In this framework, visualization tools support users by reducing the

cost of common actions. Reducing costs increases the efficiency of the current users and

lowers the barrier for new users.

Researchers have designed new interactions that allow people to quickly and easily shift

between data representations in order to explore and understand data. Early work by Becker

shows how direction manipulation, specifically brushing over variables with a mouse, can

help people interactively highlight portions of a visualization [23]. Interactive highlighting

helps focus attention on specific portions of the data. It also helps programmers easily

20

switch between portions of interest to discover patterns and make sense of data.

Visualization tools evolved to include new interaction techniques such as dynamic queries

through faceted search, which allow programmers to sort, filter, and color data based on

variables in the dataset [13, 121, 122, 136]. More recent work on collaborative interactive

visualization tools looks at how tools can facilitate sensemaking in group settings [57,59].

Most early interactive visualization work focused on specific domains [13, 136]. Over time,

researchers extracted general principles for building interactive visualization tools [123].

Shneiderman identifies an effective process for exploring data: “Overview first, zoom and

filter, then details-on-demand.” First the system should provide a high-level overview of the

dataset containing only the most important information. Users should then be able to dig

into data by zooming into portions of the overview visualization and/or filtering out

examples. Zoom and filter allows users to push away parts of the dataset they don’t care

about so they can focus on subsets of interest. Finally, the system should provide details

when users ask for details. Shneiderman elaborates on this process, on datatypes that might

need to be visualized, and on the actions that users take when exploring data though

interactive visualizations.

Current general-purpose visualization tools build on these abstractions. Because machine

learning data is typically stored in a data table, the tools most relevant to machine learning

programming are general-purpose database visualization tools. Research projects such as

Polaris allows users to load and visualize structured data [126]. Figure 2.2 shows the Polaris

interface. Users connect Polaris to a structured data source (e.g., spreadsheet or database)

that they want to visualize, and Polaris allows users to create charts and graphs by

interactively specifying which columns they want to compare. Polaris recognizes the data

type of each column, and based on the type it selects appropriate visualizations. Commercial

tools like Tableau [12] and Spotfire [11] build upon Polaris to provide mass market

general-purpose visualization support.

The visualization components of my tools are heavily influenced by prior work on interactive

visualization systems. The analysis interface in Gestalt provides a subset of Polaris’s

functionality. Hindsight and Prospect provide faceted browsing capabilities for exploring

data. Programmers can sort, filter, and color datasets to understand the output of their

classifier by zooming in on examples of interest (e.g., misclassified examples). My tools

extend current work by providing specific functionality for machine learning. For instance, all

21

!"## $"%&#'()*+&$#, -"$.#(, %(), -"%*)$"+)$ +/
#(01* $&2$*'$ +/ '3* -('(4

! !"#$%&#' (%)&#*+ $+&'), 5)(#,$"$ 6+)$"$'$ +/ %(),
-"//*0*)' '(7 $&63 ($ -"$6+8*0")1 6+00*#('"+)$
2*'!**) 8(0"(2#*$9 /")-")1 .(''*0)$ ") '3* -('(9
#+6('")1 +&'#"*0$9 ()- &)6+8*0")1 $'0&6'&0*4 5)
()(#,$"$ '++# %&$' 2* (2#* '+ 1*)*0('* -"$.#(,$
$&"'*- '+ *(63 +/ '3*$* '($7$4

! -.&#/0*$/0+ %1$'02*3', :3* ()(#,$"$.0+6*$$ "$ +/'*)
() &).0*-"6'(2#* *;.#+0('"+) +/ '3* -('(4 5)(#,$'$
%&$' 2* (2#* '+ 0(."-#, 63()1* !3(' -('('3*, (0*
8"*!")1 ()- 3+! '3*, (0* 8"*!")1 '3(' -('(4

<+#(0"$ (--0*$$*$ '3*$* -*%()-$ 2, .0+8"-")1 () ")'*0=
/(6* /+0 0(."-#, ()- ")60*%*)'(##, 1*)*0('")1 '(2#*=2($*-
-"$.#(,$4 >) <+#(0"$9 ('(2#* 6+)$"$'$ +/ ()&%2*0 +/ 0+!$9
6+#&%)$9 ()- #(,*0$4 ?(63 '(2#* (;"$ %(, 6+)'(") %&#'".#*
)*$'*- -"%*)$"+)$4 ?(63 '(2#* *)'0,9 +0 !"#$9 6+)'(")$ ($*'
+/ 0*6+0-$ '3(' (0* 8"$&(##, *)6+-*- ($ ($*' +/ %(07$ '+
60*('* (10(.3"64

@*8*0(# 63(0(6'*0"$'"6$ +/ '(2#*$ %(7* '3*% .(0'"6&#(0#,
*//*6'"8* /+0 -"$.#(,")1 %&#'"-"%*)$"+)(# -('(A

! !"#$%4*0%*$',B&#'".#* -"%*)$"+)$ +/ '3* -('(6() 2*
*;.#"6"'#, *)6+-*- ") '3* $'0&6'&0* +/ '3* '(2#*9
)(2#")1 '3 -"$.#(, +/ 3"13=-"%*)$"+)(# -('(4

! 5/6&*0*$%4', :(2#*$ 1*)*0('* %&"''(&)'*+!'$ -"$.#(,$
+/ ")/+0%('"+)9 !3"639 ($:&/'* CDEF *;.#(")$9 (0*
($"#, 6+%.(0-9 *;.+$")1 .(''*0)$ ()- '0*)-$
(60+$$ -"%*)$"+)$ +/ '3* -('(4

! 7*6%#%*0, :(2#*=2($*- -"$.#(,$ 3(8* () *;'*)$"8*
3"$'+0,4 @'('"$'"6"()$ (0* (66&$'+%*- '+ &$")1 '(2&#(0
-"$.#(,$ +/ 10(.3$9 $&63 ($ $6(''*0.#+' %('0"6*$ ()-
:0*##"$ -"$.#(,$9 /+0 ()(#,$"$4 <"8+' :(2#*$ (0* (
6+%%+) ")'*0/(6* '+ #(01* -('(!(0*3+&$*$4

G"14 H $3+!$ '3* &$*0 ")'*0/(6* .0*$*)'*- 2, <+#(0"$4 >)
'3"$ *;(%.#*9 '3* ()(#,$' 3($ 6+)$'0&6'*- (%('0"; +/
$6(''*0.#+'$ $3+!")1 $(#*$ 8*0$&$.0+/"' /+0 -"//*0*)'
.0+-&6' ',.*$ ") -"//*0*)' I&(0'*0$4 :3* .0"%(0, ")'*0(6'"+)
'*63)"I&* "$ '+ -0(1=()-=-0+. /"*#-$ /0+% '3* -('(2($*
$63*%(+)'+ $3*#8*$ '30+&13+&' '3* -"$.#(,4 J* 6(## (
1"8*) 6+)/"1&0('"+) +/ /"*#-$ +) $3*#8*$ (,+%)"' %!$-+.+-"*+/#4
:3* $.*6"/"6('"+) -*'*0%")*$ '3* ()(#,$"$ ()- 8"$&(#"K('"+)
+.*0('"+)$ '+ 2* .*0/+0%*- 2, '3* $,$'*%9 -*/")")1A

! :3* %(..")1 +/ -('($+&06*$ '+ #(,*0$4 B&#'".#* -('(
$+&06*$ %(, 2* 6+%2")*- ") ($")1#* <+#(0"$
8"$&(#"K('"+)4 ?(63 -('($+&06* %(.$ '+ ($*.(0('*
#(,*0 +0 $*' +/ #(,*0$4

! :3*)&%2*0 +/ 0+!$9 6+#&%)$9 ()- #(,*0$ ") '3*
'(2#* ()- '3*"0 0*#('"8* +0-*0$ L#*/' '+ 0"13' ($!*## ($
2(67 '+ /0+)'M4 :3* -('(2($* -"%*)$"+)$ ($$"1)*- '+
0+!$ (0* $.*6"/"*- 2, '3* /"*#-$ +) '3* 0 $3*#/9
6+#&%)$ 2, /"*#-$ +) '3* 1 $3*#/9 ()- #(,*0$ 2, /"*#-$
+) '3* '"0$2 LKM $3*#/4 B&#'".#* /"*#-$ %(, 2* -0(11*-
+)'+ *(63 $3*#/ '+ $3+! 6('*1+0"6(# 0*#('"+)$3".$4

! :3* $*#*6'"+) +/ 0*6+0-$ /0+% '3* -('(2($* ()- '3*
.(0'"'"+)")1 +/ 0*6+0-$ ")'+ -"//*0*)' #(,*0$ ()-
.()*$4

!"#$"% %" &$'()#$&*+!(& !,!"%- .#* /0%*,1 &2&$,!+!1 &23 4+!0&$+5&"+#2 #. -0$"+3+-%2!+#2&$ *%$&"+#2&$ 3&"&6&!%! 7

.89' :' ";<)=>?@8A BA<@ 8CD<@E?F<' &C?>GADA F=CAD@BFD D?H><IH?A<J J8AK>?GA =E @<>?D8=C?> J?D? HG J@?998C9 E8<>JA E@=L D;< J?D?H?A< AF;<L? =CD=
A;<>M<A D;@=B9;=BD D;< J8AK>?G' & 98M<C F=CE89B@?D8=C =E E8<>JA =C A;<>M<A 8A F?>><J ? M8AB?> AK<F8E8F?D8=C' ";< AK<F8E8F?D8=C BC?LH89B=BA>G J<E8C<A D;<
?C?>GA8A ?CJ M8AB?>8N?D8=C =K<@?D8=CA D= H< K<@E=@L<J HG D;< AGAD<L D= 9<C<@?D< D;< J8AK>?G'
Figure 2.2: Polaris allows users to interactively visualize a database. Polaris reads in a

connected database, understands the column types, and provides an interface for creating

visualizations by selecting columns.

22

Figure 2.3: Protovis breaks visualizations down into component parts (called marks) and

provides API support for composing visualizations based on those parts. This image shows

a bar chart composed of bar marks and associated code in Protovis.

three tools provide visualizations that allow programmers to inspect raw examples in their

dataset. Linking to raw data is important, since information is often lost when raw data is

converted into a structured data source. Programmers need to be aware of the information

loss so they can take steps to improve the performance of their model (e.g., writing new

features).

2.2.2 Programming Support for Visualization

Database visualization tools reduce the burden of visualizing structured data. However, not

all data is structured, and even if it is structured it may not be organized into standard types

or there may not be appropriate visualizations. For many tasks, programmers will need to

build their own interactive visualization system. Machine learning and visualization share

many properties. For example, both have data flow pipelines through which data is

processed. Programming support for building interactive visualizations can help inform

programming support for training models.

The prefuse visualization toolkit supports the construction of new interactive visualization

programs [58]. Prefuse is based on the information visualization reference model, which

breaks visualization down into a data flow that loads abstract data, filters that data, and

renders filtered data into a visual form. Prefuse provides abstracts that allow programmers to

easily construct a data processing/rendering pipeline to visualize data and to create new

interactions that allow users to interact with the pipeline and change visualizations.

Tools like Protovis further deconstruct visualizations into their component parts [26].

23

Programmers compose a new visualization by specifying marks and the properties of those

marks. Figure 2.3 shows how a programmer creates a bar chart. The chart is composed of

bar marks whose bottom property is 0, and whose height property is connected to

underlying data. D3 allows programmers to bind data to a website’s document object model

(DOM) and apply transformations within the document [27]. By choosing to operate directly

on the DOM instead of creating their own data representation, the designers of D3 ensured

that their tool can easily interoperate with existing web development tools and programming

practices.

All of these tools are built on common abstractions. Heer and Agarwala have encoded these

abstractions as design patterns [56]. These patterns provide structure for new programmers

trying to build their own interactive visualization tool. For example, Heer and Agarwala

recommend a Cascaded Table design pattern for storing data. Unlike row-major tables that

make adding new examples fast, cascaded tables make adding new features fast. Because

datasets are often constant for visualization applications, adding new features is more

common than adding new examples.

Abstractions provided by visualization tools can inform the development of machine

learning tools. For instance, Hindsight and Gestalt provide a data flow organization similar to

the organization described by prefuse. All of my tools store data in a cascaded table, because

adding new features to a data table is common as raw data is transformed through the data

flow.

2.2.3 Algorithm-Specific Visualizations

If programmers don’t understand how a program works, they can’t improve it. This is a core

difficulty when training a model. Algorithms automatically parameterize a function based on

data, and those parameters are used in potentially unknown ways. When the trained model

performs poorly, programmers are unable to understand the reason for that failure. Machine

learning experts look at learned parameters and use their knowledge of how the algorithms

work to make sense of the model’s behavior. Researchers have looked at how expert

intuitions can be encoded in visualizations to help those without machine learning expertise

understand the behavior of their models.

Motivated by providing explanations for results, Becker et al. visualize the internals of a

binary Naïve Bayes algorithm [22]. They provide representations that link features to ground

24

masters
bachelors

assoc−acd
assoc−voc

some college
HS grad

12th

10th

prof−specialty
prot−service

tech−support
sales

armed−forces
craft−repair

transport
clerical

7th−8th

machine−op
farming

28−29
30−33

34−36
37−61

62+

Figure 2.4: A visualization of a Naïve Bayes algorithm by Becker et al. The visualizations

show important features, the breakdown by class (pie chart), and the number of instances

(height for pie chart).

truth labels and the distribution of examples. For example, their 3D pie chart representation

has pies with slices corresponding to the ground truth label and heights determined by the

number of examples that have that feature (Figure 2.4). Becker provides features for

interacting with visualizations by sorting, filtering, and editing data. Researchers have also

provided similar visualizations for other common algorithms, such as support vector

machines and decision trees [18,32].

These visualizations assume some familiarity with the internals of a machine learning

algorithm, and that assumption is unrealistic for many programmers. Additionally, the set of

algorithms is ever growing. Machine learning researchers are creating new algorithms, often

trading interpretability of the algorithm for performance. I focus on general techniques that

do not rely on how a specific algorithm works. For example, Prospect works for any

classification algorithm. It combines information used to train a classifier (data and ground

truth label) with information gained from experimentation (predicted label) to provide useful

visualizations of program behavior. My algorithm-agnostic approach makes my tools robust

to the introduction of new algorithms, but it does not replace algorithm-specific

visualizations. Algorithm-specific visualizations provide a complementary way for

understanding the behavior of a trained model.

2.3 Experimentation
Programmers explore the space of potential models by running experiments. They change

the code, data, or both, and compare the performance of the new model to the old one. As

25

they experiment, tracking changes and associated results (the experimentation history)

becomes increasingly important. Researchers have developed tools in other domains that

provide support for capturing history, exploring history, and comparing results. In this

section, I look at existing work in these areas.

2.3.1 Tracking Histories

When tasks are wholly within the confines of a computer, tracking experimentation is easy.

The computer has the entire program state, and application developers can provide

functionality for capturing and restoring previous states. This is the intuition behind the

undo button [94]. The undo button allows users to try an action without destroying the

state. Powering the undo button is the undo stack. The undo stack can be viewed as a

historical record of a user’s actions – a hidden experimental notebook.

Researchers have long understood the importance of providing users with access to

experimentation histories when building applications for exploratory tasks. For instance,

when describing how interfaces can enable innovation and creativity, Shneiderman explicitly

refers to histories as “central” to improving the quality of a result [124]. Histories are

important records of experimentation that can be used to help people reflect on their prior

actions and refine their creative work. In addition, user interfaces can use histories to help

people interact, explore, and share what they have done to figure out what to do next.

To make use of a history, an application developer first has to capture it. One important

decision is when to store application state. For many tools, snapshots are taken

automatically every time the application state changes. State changes are often associated

with a user action. For some tasks, automatic snapshots do not make sense, because there

are too many minor state changes that are not meaningful. In these situations, users may

have to manually save snapshots of system state.

For example, when programmers author functions by writing code, the state changes each

time they edit a file. These minor edits to files are not meaningful, but capturing history is

still important because programmers make errors. Rewinding the code back to a point

where the mistake wasn’t there helps programmers localize errors [44]. Consequently,

modern version control systems are indispensable to most large software organizations.

When using a version control systems, a programmer first creates a repository to store their

history and then manually checks in code each time they want to capture a major state

26

change. Version control systems such as RCS [132], CVS [33], and Subversion [35] rely on a

centralized repository. Programmers have to be connected to the repository in order to save

versions of their system. As connection to a server is often a barrier to use, decentralized

systems such as GIT [86] and Mercurial [106] have become popular.

Outside of large organizations with experienced programmers, software management

techniques like version control are used less frequently. For example, a recent study of

scientists reveals some of the difficulties programmers might have using version control

tools. Although they spend over half of their time building software, very few scientists have

a good understanding of version control systems. This gap is due to a lack of familiarity with

the tools and difficulties setting up version control systems. When scientists realize they

need a version management system (e.g., when they need to re-execute an old experiment),

it is often too late. These results suggest that automated solutions for keeping software

histories can help programmers overcome these barriers.

Automation is difficult with modern version control systems. Unlike previous recording

mechanisms where each change corresponds to a user action or a change in the system

state, version control systems don’t have a good semantic representation of changes. A poor

semantic representation means that version control systems don’t know when to

automatically record a change.

Log-structured file systems attempt to solve the when problem by keeping track of all

changes to files [117]. As storage may become an issue over time, these systems have

policies for removing old versions in order to balance a useful historical record with

limitations in storage space. In the last few years these systems have seen a rise in popularity,

with implementations in modern operating systems [2,81] and storage services [4].

Even with automated techniques, a lack of semantics is limiting. Log-structured file systems

still do not know what a change means. Changes in multiple files may correspond to a

meaningful change, such as a new feature, or they may not, such as a simple change to a

variable name. These changes look the same to the file system. When surfacing version

information to a programmer, semantic changes are important for navigating through a

large experimentation history.

Recent work has looked into automatically capturing semantically interesting changes.

Causality-based versioning [98] looks at the relationships between processes and files to

27

keep track of dependancies between processes and files. Programmers must provide specific

guidelines for tasks (e.g., training a model). Once those guidelines are in place,

causality-based versioning automatically maintains relationships internally. These

relationships are used to intelligently pick when to version and to provide rich information

about what the changes mean.

Once history is captured, the interface needs to expose the history to the user. Modern tools

go beyond a simple linear undo and provide rich support for interacting with recorded

histories. For example, Amulet provides support for selective undo [101]. With selective undo,

users can review the list of actions they have taken and selectively undo actions in a

non-linear fashion. Tools like Photoshop [1] and Matlab [5] provide support for selective

undo when editing images and writing scripts. Photoshop also provides new interactions,

such as the history brush. The history brush allows people to paint changes from a previous

canvas onto the current canvas.

Many problems have complex non-linear histories. For large software projects, different

programmers explore variations of the code base in parallel. For these projects, version

histories have branches, and the structure of the history looks like a tree. Research tools like

Designers Outpost have looked at how users can interact with a branched history. Designers

Outpost digitizes paper artifacts that are created during the brainstorming process [72,73].

Like many creative tasks, designers explore and abandon many branches. Designers Outpost

automatically captures actions that a designer takes and provides a linear history of the

current branch with collapsed portions that reveal other branches. This branch-preserving

history allows a designer to go back and revisit prior thoughts when they run into a

roadblock. A similar approach to capturing and interacting with branched histories has been

taken by commercial data exploration tools, such as Palantir [9].

Capturing and interacting with history is often an essential capability in many pieces of

software. In a usage study of Word 2003, undo was the fourth most common used

capability, after paste, save, and copy [67]. When researchers reflected on the design of

Labscape, a ubiquitous computing application designed to support biologists, they found

that the automatic recording and review of history was the most useful capability [19].

Biology is an experimental science, and experimental tracking before Labscape was a

painstaking and error-prone manual process.

28

Because capturing and interacting with history is important for a number of tasks,

researchers have looked at providing tracking support in databases and operating systems.

The database community has focused on capturing the set of transformations that led to the

current records in the database [34]. This historical record is often called data lineage or data

provenance. Provenance-preserving databases allow users to ask important questions about

the origin of a record in the database, such as where the data came from, why an output

value resulted, and how the output was computed.

In the systems community, researchers have looked at tracking data provenance at the

operating system level [51,90,97,99]. These systems modify the operating system to link

low-level system calls to changed files. Provenance information is tracked automatically and

stored as additional metadata for files. Because provenance is built into the file system,

programmers can leverage historical information when developing new applications. For

example, Burrito is a system that uses file system provenance to automatically create an

experimentation notebook for programmers interacting with data [53].

Tracking histories is especially useful for computational tasks that have a structured

workflow (e.g., visualization, gene alignment). A number different of workflow tools have

been created for these tasks [50]. Explicit structure can enable useful functionality that

augments and enhances experimentation and exploration. For example, VisTrails, a data flow

tool for creating visualizations, captures a structured data flow and associated

visualizations [120]. The structure of the flow allows the tool to provide new interactions for

exploring the history. For example, programmers can specify partial data flows, and the

system will search the history for prior sessions that match the partial data flow.

My tools combine aspects from many different history capture and exploration tools.

Hindsight tracks versions of code, data, and experimental results. This tool uses the structure

of the data flow to help programmers navigate historical results and use those historical

results to design new experiments. Hindsight automatically captures program state every

time a programmer trains a new model. Because trained models have objective performance

measures, Hindsight can associate each new version with a set of performance numbers.

This association provides programmers with a clear overview of their progress while training

a model. Programmers can also dig into these historical performance measurements in

order to compare different versions.

29

57

Figure 6. Sequence illustrating an on-demand Side View popping up.

Figure 7. A Side View for a toolbar item in a text editor.

Figure 2.5: The above figure showa Side Views preview for augmenting an image. The user

can see the image converted to polar coordinates side-by-side with the current image.

2.3.2 Comparing Multiple Alternatives

Comparison is a key part of all experimental processes. Terry et al. note that when working

on a new design, digital artists experiment by creating variations to look at alternatives,

comparing alternatives to find differences, and evaluating the goodness of the alternatives

based on those differences [130]. Terry’s observations are consistent with both observations

of other design tasks [103] and with general guidelines for building tools that support

experimentation [52, 124] and results from other studies of other design tasks. Good

experimental practice affects the quality of the final design. Studies show that creating and

comparing alternatives can ultimately prevent local minima and can lead to better designs in

the long run [41,42].

Tools can include support for varying a design and comparing alternatives. Terry et al.

present Side Views, an interface mechanism for presenting alternatives [131]. Side Views

augments current interfaces by showing the result of an action before a user takes that

action. Figure 2.5 shows an example of a Side Views preview being applied to an image

before the user clicks on that image. This allows the user to quickly explore alternatives

without committing to the change and then undoing.

Programmers often need to compare the source code when authoring functions. Consider

the scenario where a programmer finds a bug. In this situation, they may need to compare

the source code for the version that has the bug to the source code for a version that is

30

bug-free. Differences in the source code allow programmers to see what has changed [125].

Current version control tools support visualizing this difference by providing a plain text

difference of the source code [64,65]. Some tools provide graphical interfaces that show

which the files that have changed and allows the programmer to look at differences between

versions [133]. These differences can be helpful, but helpful differences are often drowned

out by many small, meaningless differences. For example, if a programmer changes a

variable name in a source code file, the file would be syntactically different but semantically

the same.

Recent work has looked at providing rich comparison support for specific programming

tasks. Juxtapose is one such tool that is designed to support parallel development of

interfaces [55]. Programmers can create multiple alternative interfaces within Juxtapose.

Similar to Side Views, Juxtapose provides side-by-side views that allow for quick, visual

comparisons between alternatives. Juxtapose provides support for evolving multiple

different code variations at the same time, and it can link to hardware so programmers can

manipulate variations using tangible controls such as switches and sliders. Programmers can

also interact with one of the interfaces to change of the internal state of the system, and

Juxtapose will change the other interfaces to maintain comparisons.

I take a similar approach in the development of my tools. In Hindsight, programmers can

write code, create alternatives and compare them. However, unlike the creative tasks

enabled by Juxtapose, trained models provide objective, numerical metrics for correctness

(e.g., accuracy, precision, and recall). These metrics can be used to quantify the differences

between alternatives. Programmers can make deeper comparisons by looking at changes in

the predicted labels for individual examples.

2.4 Current Machine Learning Tools
Given the success of machine learning as a tool for solving hard problems like document

classification and medical diagnosis, research and industry are trying to make it easier to

training new models with machine learning. Current approaches can be broadly categorized

into two groups: domain-specific tools and general-purpose tools. Domain-specific tools

reduce the complexity of the machine learning process by limiting the types of input a user

can provide and focusing on support for a single domain (e.g., image classification or text

recognition). General-purpose tools support specific tasks (e.g., generating features,

31

choosing an algorithm), but do not effectively support the process.

2.4.1 Domain-specific Tools

There is a growing body of work on tools that help people train models for specific domains.

In this dissertation, I refer to these systems as domain-specific tools. Crayons is an early

example of a domain-specific tool [45,46]. This tool allows application designers to train

image segmentation models, which are used to create camera-based interfaces. Crayons

does this by allowing designers to directly interact with an image using a “painting”

metaphor. In this section, I describe how a potential user would use Crayons to train a model

in order to show how domain-specific systems work. I then provide examples of how

domain-specific tools have evolved since Crayons and compare domain-specific tools with

my tools.

How domain-specific tools work

Figure 2.6 shows how designers interact with Crayons to segment an image. In this scenario,

the designer is training a hand tracking system. To track a hand, the system first needs to

recognize which pixels in the image correspond to a user’s hand and which pixels do not. In

Crayons, designers separate the pixels that correspond to the hand from the pixels that

correspond to the background. In order to make this separation concrete, the designer

selects an image from the image stream and then colors over the pixels that correspond to

the hand. The designer then selects another color, colors the background, and asks Crayons

to learn a model that segments the hand from the background. Coloring provides Crayons

with labeled pixel data, and Crayons learns an image segmentation model based on the

colors. Then, Crayons segments the image using the new model and overlays the results on

top of the original image. The designer can see the results, find areas where the image

segmentation algorithm is not working well, and add more data by recoloring the image.

They continue this process until the image segmentation model effectively segments the

image.

The design decisions behind Crayons are important for lowering the barrier to using

machine learning. Crayons focuses on a specific domain: image segmentation for

camera-based interfaces. Limiting the application domain makes building Crayons possible.

A limited domain allows Fails and Olsen to provide targeted visualizations and interactions.

In Crayons, the coloring interaction for gathering pixel data and the overlays for checking

32

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 2.6: This figure presents stages of training an image segmentation model using

Crayons. The designer iterates between providing the learning algorithm with data by

coloring the image (right) and checking the effectiveness of the model by looking at the

overlay of the pixels (left). Over time they are able to develop a more accurate model.

segmentation results are particular to the problem domain of image segmentation.

By focusing on the image segmentation domain, Crayons can hard-code feature generation

and classification algorithms that work well for segmenting images. Removing complex

steps in the machine learning process makes Crayons accessible to more people. Because

the designer does not need to write code to create visualizations, generate features, and

train a model, non-programmers can effectively train image segmentation models.

Crayons provides an interactive loop where the user can quickly provide more data for the

learning algorithm, and Crayons can quickly provide feedback on what it understands. For

domain-specific tools, the feedback does not need to be rapid [63], but in many cases it is.

What is important is that there is a feedback loop. The user needs to communicate what

33

they want the system to do. In Crayons, users provide examples by coloring images. The

computer needs to communicate what it knows to the user. In Crayons, computers provide

overlays on top of images. Based on this feedback, the user adjusts the information they

provide and thereby guide the system to a useful model.

Further work on domain-specific tools

Researchers have taken the interactive machine learning model and applied it to their own

domains. For example, Exemplar allows designers to build sensor-based interactions [54].

Designers demonstrate interactions using a physical device connected to a computer.

Exemplar visualizes the sensor stream, and designers can annotate segments of the

visualization that correspond to the interactions. Using these annotations, Exemplar learns a

model that it applies in real time to the sensor stream. Designers can immediately test the

model by demonstrating the interaction again and checking the visualization to see if the

interaction was properly labeled. Exemplar is one of many successes that have come from

applying the interactive machine learning model to a specific problem domain. Interactive

machine learning has also been applied successfully to a number of other domains such as

computer vision [91], text extraction [62, 111, 135], instrument creation [47], network alarm

triage [17], document clustering [21,43], context-aware applications [40], 3D gesture

recognition [20], and image search [49].

Much of the work on domain-specific tools takes the form of an existence proof. This work

shows that it is possible to build tools that enable people to train machine learning

algorithms without having to write code. However, this work does not show how these

kinds of systems should be built in general. Recent work has focused on the general design

principles behind interactive machine learning systems. Stumpf et al. discuss what types of

explanations are the most understandable [127]. Amershi et al. show how to pick examples

that do the best job of communicating to the user what the computer understands [14], how

to help users keep track of models as they experiment [15], and how to provide feedback on

which features the system is using [16].

Designers of domain-specific tools trade generalizability for reduced complexity. By reducing

complexity, domain-specific tools increase the number of people that can actually use

machine learning to solve problems. However, the same design decisions that reduce the

complexity tend to make domain-specific tools brittle. For example, by hiding certain tasks in

the machine learning process (e.g., data processing, feature generation, and algorithm

34

selection), creators of domain-specific tools limit the space of problems that can be solved

with those tools. As data collection technology improves, there will always be new domains

that could benefit from machine learning techniques. Tools such as Crayons cannot help in

those domains.

Hardcoded algorithms and visualizations can even prevent domain-specific tools from

handling simple variations of problems within their own domain. Consider the situation

where a Crayons programmer finds that lighting plays a huge role in the accuracy of their

model. Crayons itself is not robust to lighting changes, but a new feature could easily make it

more robust. But, the design of Crayons prevents the programmer from changing any of the

features – they’re stuck. They must start from scratch and rebuild the same framework

provided by Crayons in a general-purpose programming tool.

By focusing on support for general-purpose programming, I provide a flexible,

domain-agnostic environment in which programmers can represent a wide variety of

different problems. For instance, both Hindsight and Gestalt allow programmers to write

code that defines every step in the classification pipeline. My studies show that every step in

the machine learning pipeline is important when trying to build an model for a new

problem. Programmers need to be able to change their dataset, their feature generation

code, their machine learning algorithms, and their evaluation criteria.

General-purpose tools will not subsume the need for domain-specific tools. There will

always be the need for domain-specific tools in important domains where the programming

skill is low and domain impact is high. Nevertheless, general-purpose tools can provide

design guidelines and new feedback mechanisms for domain-specific tools. For instance,

Prospect provides a new way for programmers to understand their dataset. Understanding a

dataset is also important for non-programmers using domain-specific tools. A

domain-specific explanation layer on top of Prospect’s visualizations can provide

non-programmers with valuable feedback on how to improve their model by providing

better data.

2.4.2 General-purpose Machine Learning Tools

General-purpose support for machine learning can be separated into three categories. First,

there are a set of tools that grew out of programming language and programming

environment support. Second, there are tools that grew out of API support for machine

35

learning algorithms. Finally, there are tools that grew out of the interactive machine learning

and interactive visualization work. All of these approaches are general, but none of them

provide support for the process of training a model. In this section, I discuss these tools and

contrast them with my work.

Programming Languages and Programming Environments

Researchers have looked at how to support machine learning with new programming

languages. These languages have special constructs that allow programmers to easily

represent common concepts or perform common actions. Machine learning specific

constructs allow the system to optimize the performance of commonly used functions and

reduce the amount of boilerplate code that programmers have to write.

Learning Based Java is one such language [112]. It reduces boilerplate coding by creating

language constructs that support common tasks, such as exploring a range of parameters.

This language allows programmers to iterate quickly, reducing the computational cost of

training a new model through automatic caching of intermediate results.

The distinction between my tools (i.e., Gestalt, Hindsight) and programming language

support for machine learning, is the same as the distinction between traditional

programming languages (e.g., C#, Java) and development environments (e.g., Visual Studio,

Eclipse). Tools like integrated debuggers and static analysis techniques are independent of

language, and help support the programming process. Similarly, Gestalt’s support for visual

analytics and Hindsight’s support for history tracking are independent of the underlying

language and provide complementary support to programming language support for

machine learning.

Gestalt and Hindsight are similar to numerical computing environments such as Matlab [5]

and R [66]. These tools provide both programming language and development environment

support for math and statistics. These tools are used extensively by machine learning

community because they make it easy to write code to implement a machine learning data

flow and create visualizations to analyze data. These tools have inspired packages for

existing traditional programming languages that provide similar functionality [3,6].

Since coding and data analysis happen in the same place, programmers using these

numerical computing environments do not have to switch between applications, nor do

they have to write glue code that converts data between formats. Machine learning

36

programming is easier with numerical environments than with most other programming

environments. However, these tools are not designed to support machine learning

specifically. For example, because it is made for math, Matlab’s visualizations mostly focus on

charts and plots of matrices and vectors. With machine learning tasks, the appropriate

visualization depends on the dataset, and these matrix-oriented charts and plots do not

apply to many common datasets. Therefore, numerical computing environments make it

difficult to build new visualizations of a dataset.

Visualizations in numerical computing environments are also not interactive. To move

between visualizations or to dig down into visualizations, programmers have to write

additional scripts. The difference between my tools and numerical computing environments

is similar to the difference between command line debuggers and breakpoint debuggers.

Command line debuggers can help experts better understand the behavior of the system,

but they are cumbersome and hard to use. Making debugging easier with visual debuggers

encourages more programmers to debug and makes the debugging process smoother and

easier. By providing interactive visualizations, my tools help programmers focus more on

data and less on code.

Finally, when training a model, programmers organize their code in a common data flow

structure. Numerical computing environments provide some data flow support (e.g.,

Simulink in Matlab), but they don’t take advantage of that structure to support programmers

training a model. For example, Matlab doesn’t use this structure to store intermediate results

like Gestalt or track experimental history like Hindsight. My work shows that supporting and

leveraging the machine learning data flow can help programmers better organize code, track

experimentation, and localize errors.

API support

Because implementing a bug-free machine learning algorithm from scratch is hard, there are

many different APIs that provide libraries of commonly-used algorithms [38, 137]. These

libraries remove an important barrier to using machine learning. If a machine learning

algorithm is poorly implemented, it may still provide a workable model, albeit one that

performs poorly. Attributing poor performance to an incorrectly implemented machine

learning algorithm is difficult, because understanding how machine learning algorithms

work requires in-depth knowledge of the statistics and math that power the algorithm. By

removing the algorithm as a potential source of error, these APIs reduce the debugging

37

burden and increase the population of programmers that can use machine learning

algorithms.

Bug-free algorithms are only one of many different factors that determine the behavior of a

trained model. Effectively training a model also involves working with data. As mentioned

previously, errors in data are common. These errors affect the behavior of the system.

Programmers need a way to understand relationships between code and data. They also

need to be able to experiment to improve the performance of their program. The designers

of some APIs have recognized this problem, and have developed interfaces on top of their

APIs to provide some visualization and experimentation support.

For example, Weka provides an experimenter interface as shown in Figure 2.7. This interface

allows programmers to load datasets, filter features, and choose an algorithm. It keeps track

of the different algorithms that the programmer has tried and their corresponding results.

Weka also supports common machine learning visualizations such as ROC curves and

scatter plots of feature responsiveness.

Weka’s experimenter interface is restricted to a set of static steps. Tools such as Knime and

Rapid-Miner extend Weka by providing an interface for specifying arbitrary data flows [24,93].

Programmers build a pipeline by connecting previously implemented components that load

data, process data to generate features, train models, and visualize results.

However, these tools have the same limitations as other data flow tools. For example, there

are a number of domains where data flow tools will not be able to provide working

components. To build more components, programmers must leave the tool, start up a

standard development environment, write code, compile the component, and add it to the

tool. This process happens every time the programmer needs to create a new component or

iterate on a component they have created. A general-purpose tool that supports training a

model must support writing code as well.

Additionally, these tools often require programmers to convert their data into a common

format. Programmers have to write the data-processing code somewhere else, but it is hard

to connect the raw data back to the model after converting it into a common format.

General-purpose tools need to support the inspection of raw data in order to help

programmers detect errors in their data and come up with new features.

38

Experimental
History

Tabs organized by
data flow

Feature
Visualizations

Figure 2.7: TheWeka experimenter interface provides programmers with some support for

visualizing data and tracking experiments. The tabs are organized according to distinct

tasks such as choosing a model and selecting features. Users can look at the history list to

the bottom left to see which models they have trained.

39

Other APIs provide support for feature generation and feature selection. Although focused on

the domain of sensor based activity recognition, the SUBTLE toolkit provides a generalizable

technique for automated feature generation [48]. Typically, programmers generate a number

of different feature combinations and then filter that number to pick only the most

discriminative features. SUBTLE automatically generates features using simple operators on

base features and automatically filters features using wrapper-based feature selection.

Although useful, programmers still need to write code to create basic features, and the new

features are limited to combinations created by applying operations provided by the API.

Interactive Visualizations of Results

When training a model, there is a level of indirection between actions and results. For

example, a programmer training a digit recognition system may observe that the system is

unable to distinguish between fours and nines. They may change parameters to their

classification algorithm and observe the results to see if the performance improves. They

may prefer to make errors on other digits in order to improve the performance of fours

versus nines. Traditionally, there hasn’t been a way for programmers to directly specify these

preferences.

Ideally, this indirection would be removed. The programmer could specify that they want

better performance on specific classes, and the model would change based on those

preferences. There is recent work that provides avenues for programmers to interact directly

with the output of a model in order to improve performance. This work focuses on creating

new algorithms and interactions that work together to remove indirection. The programmer

indicates through some interaction what they want the results to look like and the algorithm

modifies itself based on those interactions [70, 129].

Talbot et al.’s EnsembleMatrix is one such tool [129]. An ensemble is a meta-classifier that

combines results from many different models. EnsembleMatrix trains an ensemble for large

multi-class problems. It then provides an interactive confusion matrix view that can be used

to steer the accuracy of the classifier. The programmer steers the classifier by grouping

regions of the confusion matrix.

ManiMatrix builds on this idea by having programmers interact directly with a confusion

matrix visualization to help guide the model [70]. Programmers can indicate preferences by

clicking on cells in the matrix. These preferences are translated into a cost matrix. The

40

underlying machine learning algorithm then optimizes this cost matrix in order to

automatically guide the development of the model.

These tools take a complementary approach to my tools. The visualizations and interactions

provided by these tools can be integrated into Gestalt and Hindsight. However, programmers

will still need support for writing code, support for collecting data to build their machine

learning program, and support for analyzing code in order to understand the behavior of that

program.

2.5 Summary
The machine learning process is characterized by three tasks: authoring code, working with

data, and running experiments. General-purpose solutions exist for all three of these tasks,

and domain-specific solutions support the machine-learning process for targeted data

domains. However, there is little general-purpose tool support for machine learning.

Before new tools can be built, it is important to observe and understand both the machine

learning process and how programmers use current toolsets to train models. This

understanding can guide the development of new tools designed to support the

general-purpose application of machine learning algorithms. In the next chapter, I present

two studies that examine the difficulties that programmers face when using machine

learning. My subsequent chapters describe tools that I have built based on the results of my

studies.

41

Chapter 3 | STUDIES

Programmers know how to author functions by writing code. On the other hand, training

models by collecting data, writing code, and analyzing results is relatively unfamiliar. In this

chapter, I study the difficulties programmers face when tasked with the unfamiliar process of

training models by using machine learning algorithms.

For the purposes of this dissertation, I define experts as programmers with a machine

learning background and experience training models using machine learning algorithms.

Experts know how machine learning algorithms work and have experience structuring a

machine learning data flow, collecting data, running experiments, and understanding the

relationships between data and results. I define non-experts as programmers that have

exposure to learning algorithms through an introductory course or through self study but

are not skilled at applying them.

My studies were motivated by the following questions:

• What kind of problems are programmers trying to solve with machine learning?

• What process do they follow to solve these problems?

• What tools do they use to help them with this process?

• How is the process for training a model different than the process for authoring a function?

• What are the barriers that both non-experts and experts run into when training a model?

• How do experts overcome the barriers faced by non-experts?

42

• How might current programming tools better support training models?

To address these questions, I interviewed computer science researchers, both experts and

non-experts, about training models using machine learning and creating applications that

use those models. These interviews informed a laboratory study in which participants used a

typical machine learning toolchain to train a model. These studies reveal breakdowns in the

programming process and limitations of current machine learning tools. In this chapter, I

discuss my methodology for both studies, results from these studies, limitations of the

studies, and implications for the design of new tools that support machine learning.

3.1 Interviews
I started my exploration of the use of machine learning by interviewing programmers who

had successfully built applications based on machine learning models. In this section I

discuss my interview methodology and provide results.

3.1.1 Participants

I interviewed 11 researchers with experience using machine learning to train models. I was

looking for researchers who were trying to train models with the end goal of using those

models in applications. These researchers are in contrast to machine learning researchers

who are trying to create new algorithms or study the performance of existing algorithms.

With this goal in mind, I interviewed both experts and non-experts. The non-experts in my

study were human-computer interaction researchers who were looking for machine

learning solutions to their problems. The experts were machine learning researchers who

were looking for problem domains in which to apply their algorithms. In this chapter, I refer

to my interview participants as IP1 to IP11.

These researchers have worked on a wide variety of problems, spanning a range of data

domains and machine learning techniques. As an indication of the breadth of their

experience, I note that these researchers have worked on problems such as: intelligent

digital photo management, vision-based facial expression recognition, availability modeling

in instant messaging, EEG-based recognition of brain activity, RFID-based activity

recognition for elder care applications, accelerometer-based activity recognition for fitness

applications, mixed-initiative pen-based text input, programming-by-demonstration

approaches to text editing, interactive tools for creating camera-based interfaces, automated

43

network packet diagnosis, and models of musical style. Each interview participant has

published multiple papers in top venues.

3.1.2 Procedure

Each participant recalled two to three prior projects in which they trained models using

machine learning. I asked them to pick one project and describe the lifecycle of building the

project, from conception to completion. I also asked them to recall how the use of machine

learning applied to other aspects of their project, such as the design of the application and

collaboration with other programmers.

Participants were provided with a notepad and pen and asked to diagram their process while

they discussed the process. I encouraged participants to diagram in two ways. First, in the

event that they stopped diagramming, I reminded them. Second, I engaged in the

diagramming process myself. I provided by own annotations and edits to their diagram to

help clarify my understanding of their process. After discussing the first project, participants

compared and contrasted it with other projects they had initially discussed. Interviews lasted

for 40 to 90 minutes. I recorded the audio from each interview and transcribed the recording

for further analysis.

3.2 Intermediate Interview Results
My interview participants described structuring their machine learning code into a linear

data flow. I call this data flow a pipeline. The pipeline includes steps for loading data,

processing data, training a model, and evaluating that model. Figure 3.1 shows a two

examples of pipelines that interview participants sketched when describing their process.

My participants used a variety of common machine learning techniques such as

classification, regression, and clustering. Because the pipeline for those techniques is similar

and because classification was the most popular of those techniques, in this section I focus

on the classification pipeline. This classification pipeline is created and refined through a

process in which programmers run experiments to explore the space of possible models. In

this section, I describe both the structure of the classification pipeline and the process. I

leave a full analysis of my interview results for the combined results section (section 3.4) later

in the chapter.

44

P3

P7

Figure 3.1: The figure above shows sketches from two interview participants. P3 was work-

ing on a classification problem and P7 was working on a clustering problem. Note that the

high level steps of problem formulation are the same (P3 calls it theory and P7 calls it goal).

Both involve collecting data (sensors for P3 and data for P7). And both have an iterative

process for improving the performance of their model.

45

3.2.1 The Classification Pipeline

The classification pipeline is a linear sequence of steps that starts with formulating a

problem. Programmers must define the inputs and outputs of their function. After they

define inputs and outputs, they can collect data. Because classification is a supervised

technique, programmers also need to provide a ground truth label for each example in their

dataset. Labeling can be a difficult hurdle to overcome because it is both time consuming

and error prone.

Consider the scenario where a programmer is training a model that classifies news stories.

This model would take as input a news story from a website (e.g., NyTimes, Engadget) and

output the category of story (e.g., finance, public interest, politics). Internet portals, such as

Google and Yahoo, use similar models to aggregate stories from the internet. To build such a

classifier, the programmer must have someone read each story and group stories into

categories. Some categories may be too similar for people to effectively distinguish (e.g.,

politics and finance overlap on regulation articles). This can lead to erroneous labels.

Labeling is also expensive, because a person has to spend time reading and grouping articles.

Figure 3.2 shows the steps in the classification pipeline after the programmer has labeled

data. Given a labeled dataset, the programmer must parse the raw data. Parsing involves

loading, processing, and cleaning the data. Processing and cleaning involves steps such as

splitting data, combining different data sources, and sampling the dataset to get a subset with

an even distribution of classes. For web news classification, the programmer must combine

data from different news websites. Because websites have different formats, a programmer

must create site-specific loaders to load articles and convert them into a common format.

After they have a parsed dataset, programmers can now generate features. Features tell the

machine learning algorithm what facets of the data are important. Programmers are often

experts in their data domain, which means they can describe features that may distinguish

classes in their dataset. Programmers need to encode that knowledge into a numeric or

categorical value that the machine learning algorithm can use to model the data. Encoding

this knowledge often involves writing code. For web news classification, a programmer may

find that proper nouns do not overlap between various news categories. The people and

places mentioned in sports articles are not the same as those mentioned in politics articles.

They can turn that understanding into a generally discriminative feature (e.g., counting the

number of times each proper noun appears).

46

web news classification

A"U.S."military"
supply"ship"fired"
Monday"at"a"small"
boat"in"the"
Persian"Gulf

parse
data

generate
features

train
model

test
model

U.S.:"10
military:"5"
supply:"5
Persian:"2"
Gulf:"2

+
-

+
-
++
+ +

--
-

- 31 29 13 23

12 79 0 3

32 13 10 21

1 7 6 72

raw data
parsed

data features model results

digit recognition

activity recognition

(t=1,p=20,y=3,r=3)
(t=2,p=5,y=2,r=5)
(t=3,p=20,y=1,r=3)
(t=4,p=5,y=0,r=5)
(t=5,p=20,y=/1,r=5)0

sin cos
FFT max

mean

Figure 3.2: Web news classification, handwritten digit recognition, and sensor based ac-

tivity recognition have similar classification pipelines. Programmers must parse data and

generate features to get the examples into a form a classification algorithm can under-

stand. After the data is in the right form they can explore different algorithms and run

experiments.

47

After features are generated, programmers can finally pick an algorithm to train a model and

design an experiment to test the model. A common experiment is random cross-validation,

where the data is randomly spilt into 𝑛 segments or folds. All but one of the segments (i.e.,

𝑛 − 1 segments) are used to train a model, and the last segment is used to test the model.

The process is repeated until all 𝑛 segments are used as the test set. The end result of this

process is a model and measurements that describe the model’s performance.

3.2.2 Machine Learning Process

The process of creating a classification pipeline is exploratory. Programmers train a model by

gathering data and writing code. They test the model by running experiments and analyzing

data. Experiments such as cross-validation provide high-level measurements such as

accuracy. Programmers understand the behavior of the model by combining these

measurements with other information, such as the raw data, the feature values, and the

parameters to a learning algorithm. Based on their understanding, programmers change

their pipeline and run new experiments. They continue searching through the space of

possible models to find a model that works for their problem. I refer to the exploratory

process as the machine learning process.

3.3 Laboratory Study
I designed the digits task to examine how difficulties manifest as programmers work on a

problem. The task is based on descriptions of the process provided by my interview

participants. This section presents the participants, task, development environment used by

participants, and experimental procedure of my study.

3.3.1 Participants

I recruited ten participants, all non-experts. To avoid confusion when discussing the two

groups of participants, I refer to laboratory study participants as LP1 through LP10. After early

experience showed that people with no experience using machine learning could make very

little progress, I decided to pull from a population that had some exposure to machine

learning. All of the participants in the study were graduate students who had some

classroom experience using machine learning.

They were also familiar with the toolset provided in the study. All of the participants reported

prior experience programming in Java and using the Eclipse IDE. Four out of the ten had

48

previously used Weka, and three of those four had worked with Weka’s API. Because I was

interested in experienced programmers rather than novice programmers, this population is

consistent with the goals of my study.

3.3.2 The Digits Task

parse
data

generate
features

train
model

test
model

raw data
parsed

data features model results

digit recognition
+

-
+
-
++
+ +

--
-

- 31 29 13 23

12 79 0 3

32 13 10 21

1 7 6 72

digit collector java / eclipse weka digit
calculator

Figure 3.3: Thefigure above shows thehandwritten digit recognition classificationpipeline

and the toolset for the digits task. I provided participants with four tools used for different

tasks. The dashed lines show what the tools were used for. Participants collected and

processed data in the digit collector. Participants generated features by writing Java code

in Eclipse and selected an algorithmand trained amodel using theWeka Explorer interface.

Participants tested their model in three ways: looking at the output in Weka, interacting

with a simple digit calculator application, and loading their model and testing data in the

digit collector.

Participants in my study were given the task of building a handwritten digit recognizer

approximately four hours. An overview of the task can be found in Figure 3.3. I chose this

task for many reasons.

49

First, handwritten digit data is easily interpretable by most people and easy to collect in a

laboratory study. Unlike other classification tasks, such as activity recognition or medical

image analysis, I do not need my participants to be experts in a data domain nor did I need

them to leave the study environment to collect data. And because images have a natural

visual representation, the accuracy of the classification is easy to verify. In contrast, text data

may be easier to understand, but takes much longer to verify. This natural interpretability of

digit data was critical to making the classification problem tractable in the four hour time

span.

Second, many people have worked on handwritten digit recognition over the years, and as

such there was as wealth of information that participants could leverage by going to the

internet and searching for related work. Also because there have been many solutions over

the years, participants could reach a satisfactory solution through a number of different

paths. Participants could collect more data, build better features, and refine their algorithm.

All of those actions could lead to better results.

Third, a good experimental setup for the digit problem is hard to do in current tools. For

example, most tools assume that random cross-validation is a valid way to evaluate a model.

However, my interviews show that for certain data random cross-validation can provide

good evaluation results, but the trained model perform poorly on new data. Digit

recognition is an example of a dataset. I wanted to see if participants could recognize the

limitations of default settings and change their experimental setup. In the task, participants

were provided with more data halfway through the study and an interactive calculator

application to help them test with their model with fresh data.

Evaluations are based on more than just accuracy. In my interviews, I found that

programmers cared about factors such as interactivity. The digit task lends itself to an easy,

interactive application that can be evaluated in a laboratory study. The interactive calculator

application also allowed me to test interactivity in addition to accuracy. I discuss this finding

in more detail in my results.

3.3.3 The Development Environment

Participants worked using a toolset that included the entire process of collecting training

data, extracting features from the images, choosing a classification algorithm, and then

interactively testing their model in a simple application. This toolset is illustrated in the

50

bottom part of Figure 3.3. This toolset is typical of the tools that interview participants

discussed using in their work. It includes four components.

The first component is a data collection application. The design of this application is similar

to that of existing pen-based gesture recognition systems [87]. Participants inputted digit

data using a stylus and a 1024x768 Wacom Cyntiq tablet display. By selecting the tab

corresponding to a digit between 0 and 9, participants could create labeled instances of that

digit. Digits were captured as 125x125 monochrome images and as normalized 20x20

grayscale images (see Figure 3.3). Participants could create and manipulate multiple data files

containing such images.

The second component is the Eclipse development environment for Java, used to extract

features from the digit images. Existing tools generally parse files into simple tabular formats.

Interview participants reported using these tools because they reduce the effort needed to

program and debug a machine learning algorithm. Interview participants also used simple

programs that they glued together to parse data, compute features, and store those features

in a tabular format. To avoid the debug and development cost of these small components, I

provided data conversion code. Specifically, I provided participants with a codebase that

parsed the file format used by the data collection tool, provided stub functions for compute

features based on the digit images, and code to output the features in a format the next tool

could understand. As a part of introducing the study, participants were shown where and

how to edit the feature generation stubs.

The third component is Weka, a well-known and widely-used machine learning tool [137].

Weka provides a large library of feature visualizations, filters, and learning algorithms.

Participants used Weka to load the tabular feature files output by their feature generation

code, to apply learning algorithms, and to evaluate model accuracy using standard

evaluation techniques (such as random fold cross-validations). Weka is the one of three

places where participants can evaluate their model.

The last component is a simple interactive calculator application used for testing the system.

This application used the participant’s feature generation code and a Weka-exported model

to interactively classify pen input. The calculator application is the second place where

participants can evaluate their model, and I included it for two reasons. First, many interview

participants reported that “trying it out” was an important part of their process of applying

51

machine learning. Providing this application closed the loop and allowed participants to

interact with the model they created. Second, the interactive use of a model exposes

important aspects of that model that are not captured when only considering accuracy, most

notably the computational cost of the features used by the model. Participants were told

their models needed to work well in an interactive context. If the features or the algorithm

used by a participant were too computationally expensive, a noticeable lag would result.

Finally, participants could also evaluate their model a third way by using the data collection

interface. Given a the model and an existing dataset, the data collection interface would

highlight examples that were classified correctly. Programmers could hover over the

example to get the predicted value of the classification. The digit collection interface

facilitated the creation of multiple datasets, training a model on one of the datasets, and

testing it on another.

3.3.4 Procedure

Participants worked in a small office free of distractions, and they were asked to think aloud

as they worked. Links to the Java API and the Weka API were provided, and participants were

free to use any resources they felt would be helpful. Nearly all chose to use the internet to

find information about features, and several downloaded code to compute features. The

workstation included a 24” Dell 2407WFP display running at 1900x1280 and the Wacom

Cyntiq tablet display running at 1024x768. Participants were free to use the available monitor

space however they chose. Most used the primary display for interacting with the Eclipse

development environment and with Weka, thus using the tablet display almost exclusively

for interacting with the pen-based data collection and calculator applications. Commercial

screen capture software continuously captured the desktop, a video camera recorded the

physical environment, and custom software took continuous snapshots of the files in

participant workspaces. To minimize the impact of the computational demands of machine

learning tools and the screen capture software, participants worked alone on a computer

with two quad-core Xeon processors (at 2.66 GHz) and four gigabytes of RAM.

Each session started with a tutorial, familiarizing participants with the toolset by stepping

them through the collection of a handful of labeled digit images, the extraction of a simple

feature, the creation of a simple model, and the interactive use of that model in the

calculator application. They were then given two hours to collect data, develop features, and

create the best classifier they could. After a break, I provided participants with 200 labeled

52

!

 First

2 Hours
Second
2 Hours

Final
Accuracy

LP1

84.7%

LP2 ---- ---- 75.3%

LP3

78.3%

LP4

82.9%

LP5

84.7%

LP6

78.0%

LP7

56.9%

LP8

22.8%

LP9

78.8%

LP10

84.4%

!
Table 3.1: The figure above shows the final accuracy of each laboratory participant’smodel,

as well as a plot of the accuracy of each participant’s model over the course of each two-

hour session.

digit images collected from four different people (5 examples of each digit per person). This

data was provided to see how participants would use it in developing their system.

Participants then had another two hours to continue developing their system, using both the

new data I provided and data they collected. Participants were told that their classifier would

be evaluated according to its accuracy for digits sketched by other people, subject to the

constraint that it worked fast enough for interactive use. Participants received a $50 gift

certificate for participation, and the participant who created the best model received an

additional $50 gift certificate.

3.3.5 Laboratory Results Overview

Table 3.1 presents the final accuracy of each laboratory participant’s digit recognition system,

as well as a plot of the evolution of the accuracy of each participant’s system over the course

of the study. These accuracies were computed using 2000 labeled digits collected from 20

different people (10 examples of each digit per person), none of which were provided to any

of the participants. The plots were computed by scripts that created and tested models

53

based on automatically captured snapshots of participant workspaces. I am unable to plot

the accuracy of LP2’s models over time, because LP2’s system made heavy use of a set of

files outside the environment that was captured.

3.4 Results
My interviews show that training a model involves constructing a pipeline through which

raw data is turned into a model. Programmers follow an experimental process when building

that pipeline. This section expands on those observations. It combines results from both

interviews and laboratory studies to break down what programmers are doing when they

use machine learning to train a model, the difficulties they face, and the breakdowns in

current tools.

3.4.1 Programmers Iterate on a Pipeline

Training a model involves building a pipeline. The pipeline processes data to get it in a form

that a machine learning algorithm can understand. Each step in the pipeline depends on the

previous step. Programmers must formulate their problem to understand what type of data

to collect. They then must collect and parse data, which can involve combining multiple

data sources, labeling data, and cleaning noisy data. After they process data, they must

generate features. Programmers can choose a learning algorithm and train a model only

after all of these dependences have been met.

A linear pipeline doesn’t mean a linear process. Programmers can’t assume they are done

with a step in the pipeline. Revisiting past choices is important. Programmers must collect

more data, write code to generate new features, or choose a different classification algorithm.

Training a good model involves revisiting and refining all of the steps in the pipeline.

Interview participants emphasized the non-linearity of the machine learning process when

discussing their work. Dead-ends were overcome by revisiting an earlier point that they had

assumed was working correctly. For example, IP6 described a long and fruitless exploration

of learning algorithms in collaboration with machine learning experts. IP6’s breakthrough

came when they went back and questioned whether their features were appropriate. They

then found that the creation of new features led to good results with a simple algorithm. In

their words, “We basically tried a whole bunch of Weka experimentation and different

algorithms ... and nothing worked, so we decided that ... maybe we should explore the

54

feature space.”

IP6’s experience points to a common experience divide. Even though they were

collaborating with machine learning experts – researchers who had spent their professional

careers studying and applying learning algorithms – they could not get their model to work

until they revisited earlier steps. The learning experts could help choose and analyze the

state-of-the-art algorithms, but were less helpful with features because feature generation

involves expertise in the data domain. Machine learning experts are not always domain

experts. I found in my studies that often building an accurate model is in many cases

dependent on effectively applying domain expertise to gather data and generate features.

Much like in the case of IP6, simple algorithms can often suffice if the data and features work

well.

In another example, IP5 described a frustration with the fact that a feature and learning

algorithm provided accurate models based on cross-validation tests, but the models failed to

work well when embedded in a deployed application. After months of testing, they found

that the root cause of this error was bias in the dataset. The model had overfit to a single

person who had provided the bulk of their training data. The collection of more varied

training data significantly improved the results. Here, revisiting the data collection step

proved fruitful for building a model that generalized in practice.

As a final example, IP5 recounted a case where they changed their problem definition. They

were building an activity recognition system and wanted to build a system that could

disambiguate between a wide set of activities. In their experiments, they found that their

model could not effectively disambiguate between two related activities. This result was

because the underlying data sources were not sensitive enough to capture the differences

between the activities. They discovered that they could design around the failure by

changing their problem definition. They combined the two error-prone activities into a

single higher level activity. This provided a more accurate model, and they were able make

slight changes to their application to account for the difference.

In lab, I observed the importance of revisiting previous steps in the pipeline. I computed the

performance of the current best model by taking snapshots of each participant’s workspace.

I then manually coded screen captures of the study tasks. I annotated the timeline with the

current step of the pipeline the participant was working on. Table 3.2 visualizes performance

55

	

 First

2 Hours
Second
2 Hours

Final
Accuracy

First
2 Hours

Second
2 Hours

Final
Accuracy

 84.7% 78.0%

Data Collection

Feature
Generation

Train Model

Test Model

Laboratory Participant 1

Laboratory Participant 6

Table 3.2: A comparison of the processes of two representative laboratory participants.

LP1 makes steady progress by iteratively exploring all portions of the problem, while LP6

spends that first portion of the study overly focused on feature generation.

and classification step over time for two representative lab participants.

LP1 revisits every component in the pipeline and makes steady progress, while L6 struggles

in part because they become overly focused on picking the right classification algorithm. LP1

starts by investing some effort into feature generation, then begins a period of iteratively

creating new training data, revising their feature generation code, considering different

machine learning algorithms, and testing the resulting system. This iterative exploration can

be seen in the very dashed nature of LP1’s activities, as the participant explores all of the

steps in the pipeline.

In contrast, LP6 spends almost the entire first half of the task focused on feature generation

and makes relatively little progress, creating a model with one of the lowest midpoint

accuracies. Once provided with additional training data (the 200 examples from four people

that I provided each laboratory participant at the midpoint of the task), LP6’s model is

noticeably improved (and screen capture recordings show that LP6 made no significant

changes to their features or their modeling algorithm). LP6 was unable to make this progress

earlier at least in part because they were overly focused on feature generation and did not

revisit their training data. L1’s final model is a top performer, while LP6’s final model performs

average in comparison to other models.

3.4.2 Understanding the Relationships between Data and Code

To make progress on the pipeline, programmers need to be able to understand why their

program is not working well. For training a model, this involves understanding the code, the

56

properties of the data, and the relationships between data and code. Programmers

inexperienced in using machine learning often don’t know that they need to understand

more than just the code. When they do realize that they need to look at more than just the

code, current programming tools make it difficult for programmers to act on that knowledge.

Experts noted that many people who are new to building machine learning programs

(sometimes the experts themselves at earlier points in their career) want to treat the

programs as black boxes. Non-experts thought they could just provide data and the system

would provide accurate models. They were not aware of the amount of work that went into

collecting data, generating good features, and choosing appropriate evaluations. This

section discusses four examples of the importance of understanding data, code, and the

relationships between data and code to making machine learning algorithms work.

IP2 has a machine learning background and significant experience applying their

background to human-computer interaction problems. In describing their general approach,

they noted they initially focus on creating promising features. They create simple

visualizations to see if there is any signal in the feature, and based on their familiarity with

the algorithm they know if the algorithm will pick up on that signal and provide a good

model. Familiarity allows experts to simulate the behavior of the model in their head.

After collecting appropriate data, IP2 iteratively creates and examines features. They

generally do not apply a learning algorithm until after they are confident their features will

work well. This approach represents one extreme. The expert feels that they understand

machine learning algorithms to the point that they can simply inspect a set of features and

know whether they will be able to train a good model.

IP1 describes another process where understanding features was important. In contrast to

IP2, IP1 was not an expert, and as such they could not simulate the behavior of machine

learning algorithms in their head. They describe a similar process of collecting data and

generating feature (just like other participants). But when it comes time to use those features

to train a model, they used hard coded rules rather than a learning algorithm to author a

function.

IP1 prefers this approach because they know why their function behaves the way it does. If it

behaves poorly, they can manually inspect their features and step through their heuristics to

determine why the function failed. They can then address the failure by adding a new

57

feature or a new heuristic. IP1 understood the tradeoff in accuracy; they knew that a learning

algorithm might provide a more accurate model. However, they preferred the heuristics

because they were more interpretable and allowed them to more easily connect the data,

features, and results to debug the behavior of their function.

I observed similar preferences in my laboratory study. For example, LP9 started by using a

decision tree algorithm, because it allowed them to easily see what features were being used

and what relationships existed between features at different levels of the tree. The

interpretably of the decision tree allowed LP9 to debug features – they would create new

features and see which of them were the most informative according the decision tree. It

was only when they had stopped working on features that LP9 started using more

complicated algorithms to train accurate models. Their final model (a boosted ensemble of

support vector machines) did indeed perform better than a decision tree, but it would be

near impossible to understand the behavior of that model.

The previous examples demonstrate the importance of understanding the interactions

between features and algorithms when debugging a model. But understanding is as

important, perhaps even more so, when the system appears to be working correctly. IP3

recounts a case where trusting performance metrics for an opaque model was harmful.

They had spent several months believing they had an effective model for classifying online

forum posts. When training this model, they worked with a table of extracted features

generated by another researcher. The performance metrics were high according to standard

evaluation techniques.

However, IP3 never looked at the data or inspected the most informative features selected by

the model when they were training the model. When they finally did, they discovered that

the model was classifying data based on a specific feature. This feature was suspect because

the relationship to the phenomena they were trying to model was tenuous at best. Digging

into the data, they realized that the feature was picking up on an event that was coincidently

correlated in their data set. When they had collected the data for a specific event they were

trying to categorize, there had been a flood of spam messages on the forum post. Their

model had picked up on the spam features, and when these features were removed the

performance of the model degraded. It was only when IP3 looked at their data, features in

conjunction with the classification results that they were able to find these errors in the

dataset.

58

In the first three examples, participants were trying to figure out how data and features relate

to experimental results. The processes were different but the goal was the same. Based on

their understanding of data, code, and the interactions between data and code, these

participants were able to figure out what to do next and train a better model. The final

example shows the risks involved with not following this process. When the results of the

model are divorced from the underlying data and features, it is possible to fall into a false

sense of security. Programmers need to be principled and check their assumptions to make

sure the data, features, algorithm, and evaluation criteria make sense.

Experts commented on the tendency of non-experts to treat algorithms like black boxes.

IP10 warns against this, pointing out machine learning algorithms cannot do “semantic

things” but that successful models instead require “really seeing what is happening with the

data.” IP4 similarly cautions that if a person cannot understand at some level the differences

between data, then it will be difficult or impossible to build a classifier that can.

3.4.3 Structuring and Tracking Experimentation

To understand how well a program is doing there must be metrics for evaluation.

Evaluations produce results, and these results help guide experimentation. Choosing an

evaluation metric can be a challenge in and of itself. Correctness is a standard metric.

Computed values such as accuracy and F-score are proxies for correctness, as they measure

various ways a model can or can not be correct. However, correctness is not the only metric.

Other factors are also important when evaluating trained models.

IP11 discussed the need to balance the utility of a feature with potential privacy implications

when using models based on personal data. They would have liked more accurate features

and more fine-grained data, but more details about their users would have leaked potentially

sensitive information. There “was kind of a tradeoff between what [they] would have wanted

to have and what [they could] have.”

IP8 discussed the computational cost of feature generation for a document classification

model, noting “If your document’s large, then it takes a lot of time.” and “Part of [making the

algorithm faster] was to cut back on the features,” LP2 dealt with the same tradeoff. They

used an algorithm to automatically generate a large number of features from their standard

set of features. Feature computation was far too slow for interactive use, so they reduced

59

their feature set by using a feature selection algorithm1.

The point of experimentation is explore the space of possible models in order to train a

model that performs well on the desired task. What performance means may vary based on

the evaluation metric, but is often consistent across experiments. For example, if a

programmer cares about accuracy, after every change in their program they can compute a

new accuracy, compare the new accuracy with the old accuracy, and pick the program that

performs better.

As they search through the space of possible models, programmers leave a trail of changes

and experimental results. My studies show that tracking these changes and their associated

results can help programmers converge on better models. For example, LP1, LP5, LP9, and

LP10 kept logs of configurations they had tried and the accuracy they had obtained with

those approaches. These four participants also trained some of the best models. Some of

these participants kept paper logs with key parameters to the model and the accuracy of the

model as seen in Figure 3.4. Others saved the model to file and encoded the important

parameters into the filename (e.g., LogitBoostWith8To18EvenWindow-Iter=10.model).

While these participants did better in my short laboratory study, the experimental logging

strategies they use are brittle and are likely to fail in the long term. Manual encodings are

often incomplete. Programmers can’t reproduce experimental results from incomplete

records. These encodings also drift over time, so even if they were complete, comparing

previous results in an experimental log to current results may be difficult. The importance of

being able to go back and reproduce results becomes clear when there are bugs that affect

the experimental results.

Errors that affect experimental results are common. For example, I found that programmers

made mistakes experimentally testing accuracy, especially when working with data from

people. At the core of this difficulty is assumption that data is independently and identically

distributed (IID). Most standard tools provide a cross-validation test that makes this

assumption; data is split randomly into folds and one fold is held out for testing while the rest

are used for training.

1Interestingly, their decision to use a feature selection algorithm based on randomized 10-fold cross-validation

using their entire dataset (as opposed to configuring a feature selection process to find features that work well

across different people) probably led to significant overfitting and hurt their model’s performance when tested

against the 2000 new test digits.

60

Figure 3.4: Some participants in my laboratory study kept paper logs of the algorithms

tried and the corresponding accuracies. These logs can be useful – participants who kept

the logs performed better than those that did not. But the logs are brittle because they

are not complete. They still rely on the programmer to remember some of the decisions

involved in generating the results (e.g., in the example above the programmer hasn’t spec-

ified which dataset and feature sets they are using). If a programmer cannot remember

these decisions, they cannot easily recreate the same experiments.

61

The random hold out creates problems when working with data from people. With models

that must be robust across different people, the correct way to evaluate a model is to test it

on people that it has never seen before. If the data is split randomly, both the training and

testing data may have data from the same person. Because learning algorithms are fairly

good at modeling data that they have already seen, the accuracy may be misleadingly high

because the algorithm has overfit to the training data.

For example, in the digit recognition problem, the way I draw a four is consistent within my

own data. If the training set has an example of one of my fours, it will do well at predicting

the same types of fours in the testing set. Because my writing style is not necessarily

consistent with someone else’s writing style, this model has been tuned to my data and

testing on my data will almost certainly lead to higher accuracy than testing on someone

else’s data. A handwritten digit recognizer should be robust to new data from new people,

regardless of who it was trained on. The correct way to evaluate a model when working with

people is to use a leave-one-out validation strategy. With leave-one-out validation

programmers choose a person to exclude from the training set, train a model on the rest of

the people, and test the model on the person that was excluded.

I observed this evaluation problem in my interviews. For example, IP5 recalled that “the

cross-validation would show ... 85% to 90% accuracy .. and then you would try it ... it worked

extremely well for some people and not well for others.” By taking variation of people into

account, IP4 was able to create a more accurate system. They reported a strategy of creating

multiple models and adapting them based on the person. At the beginning of a deployment,

IP4 tested to see which model seemed to be the best fit for each person in the deployment.

I tested these cross-validation errors in my laboratory study. Halfway through the

experiment, participants were provided with more data from 4 different people. This addition

of data was so they could test their assumptions and revise their model based on new data.

There are a number of different ways participants could have incorporated this data. For

example, participants might have trained their system using their own data and tested it

against the provided data. Or they might have conducted leave-one-out validations, where

they trained a model using three out of the four people, and tested against data from the

remaining person. Either of these approaches would have likely provided some insight into

how well their program generalized to data from new people.

62

2000 Number

Participant Test Accuracy Digit Accuracy Test Error of Examples

LP1 87.8% 84.7% 03.1% 688

LP2 98.0% 75.3% 22.7% 200

LP3 89.1% 78.3% 10.8% 258

LP4 95.6% 82.9% 12.7% 250

LP5 91.3% 84.7% 06.6% 425

LP6 90.4% 78.0% 12.4% 230

LP7 72.0% 56.9% 15.1% 200

LP8 26.5% 22.8% 03.7% 200

LP9 92.8% 78.8% 14.0% 320

LP10 93.4% 84.4% 09.0% 500

Table 3.3: A comparison of how well participant’s own tests indicated their models per-

formed, how well they performed on 2000 new test digits, and how many training exam-

ples each participant used.

Instead, all participants trained a single dataset merging data from all four people (often

adding more data of their own). They then evaluated the dataset using randomized 10-fold

cross-validation. While randomized cross-validation is a standard technique for testing a

system, it assumes that the IID assumption holds. Random cross-validation ignores the fact

that the data was collected from four people. LP10 initially began to take an approach based

in training with data from three people and testing against a fourth, but instead used

randomized cross-validation because it was easier within Weka.

The left side of Table 3.3 shows one consequence of laboratory participants using misleading

cross-validation methodologies. In comparison to evaluations that the participants

performed, every model performs worse when tested against the final set of 2000 digits. A

paired t-test indicates that participant estimates of how well their models performed are

significantly higher than performance measures obtained using the 2000 test digits

(𝑡(9) = 5.96, 𝑝 < .001). Such discrepancies can significantly impact a programmer’s process:

LP2, for example, quit the task with time remaining because their evaluations showed their

model performing at 98.0% accuracy, though its performance on the 2000 digits was much

lower.

In real world situations where programmers are trying to use trained models within

applications, a false sense of accuracy is dangerous. When IP5 realized they had an error in

their evaluation metric, they had to start the process of refining their data, features, and

63

algorithm over again with their new evaluation metric. A common way to deal with

leave-one-out cross-validation situations is to provide more data. With enough data, the

effects of overfitting are diminished. State-of-the-art digit recognizers (like the ones used by

the U.S. Postal Service) use massive datasets to avoid the IID assumption.

Evidence of this can also be seen by examining how many example instances each of

laboratory participants used in relation to how closely their estimates of model accuracy

matched final test accuracy (see the right side of Figure 3.3). An analysis of variance,

excluding LP8 (whose failure to produce an effective model makes them an outlier for this

analysis), shows that the number of training examples each laboratory participant used had a

significant effect on how well their estimates of model performance corresponded to tests

performed using the 2000 test digits (𝐹(1, 7) = 14.00, 𝑝 < .01). While the collection of large

datasets is a powerful approach, interview participants noted that the cost of such data

collection can be prohibitive. For example, when asked whether they collected more data to

further refine their model, IP10 responded “No. It was way too hard. There was no question.”

Problems with the IID assumption are just one of many systemic errors that can invalidate

past experimental results. Recall that IP3 had to restart the machine learning process from

scratch when they learned about errors in their underlying data. Their evaluation criteria did

not change, but they had to rethink their feature computation code and their algorithms.

Everything they had done in the past was called into question.

This brings up an important observation. Because everything in the machine learning

process is connected, there can be errors in the current pipeline that affect the integrity of

past experimental results. Experimental results are how programmers make decisions about

what works well and what doesn’t work well, so changes in the integrity of past results bring

to question the soundness of past decisions. For example, IP3 and IP5 can no longer assume

the features that worked well in the past will work well in the future, and even more

importantly they can no longer assume that what didn’t work well in the past won’t work

well now. The fact that these errors occur relatively frequently is a reality that programmers

must accept and work to overcome.

Experimental history is crucial for tackling these sorts of systemic errors. With good tracking,

programmers can go back, apply bug fixes, and rerun key experiments. However, as my

laboratory studies show, tracking experimental histories is hard to do manually. Reproducing

64

and comparing results can be even harder with incomplete histories. Consequently, it is hard

for programmers to check prior assumptions.

3.4.4 Breakdowns in Current Tool Support

With current machine learning tool chains, it is difficult to construct and iterate on a pipeline,

understand relationships between data and code, and structure and track experimentation.

One reason why these important tasks are difficult is that current machine learning tools are

disconnected. The toolset used in my laboratory study is typical of what I observed in my

interviews (Figure 3.3). Programmers have separate tools for collecting data, processing data

into features, learning a model from featurized data, and testing the model.

Separate tools impose an application switching cost. To move between generating features

in Java and choosing a new algorithm in Weka, programmers must save their data to an

intermediate file format, quit Eclipse, switch to Weka, load data, and run experiments. Once

in Weka, going back to generating features in Java requires another application switch.

Interview participants reported overcoming this barrier by writing glue code to connect

different steps in the classification pipeline.

Glue codes reduces application switching costs but is often brittle. Changes to the learning

process lead to considerable changes in code. Additionally, programmers may lose

important functionality. For example, if programmers use the Weka API to connect

generating features in Java to choosing an algorithm with Weka, they lose much of the GUI

support provided by the standalone Weka application.

The writing and maintenance costs of glue code are just some of the difficulties that

programmers face. With current tools, information is lost when switching between data

formats. For example, participants in the laboratory loaded the output of their feature

generation code in Weka, but once within Weka they were unable to see the actual image of

the digit associated with each feature set and results. This makes it hard to connect raw data

(e.g., digit image) to features (e.g., pixel values) and experimental results (e.g., predicted

labels). Connecting raw data to features and results is important for debugging the behavior

of the model.

Experts prefer setting up their entire pipeline in a single programming environment like

Matlab. Matlab allows programmers to better determine how best to proceed, because it

allows them to better inspect their algorithms and data. IP10 stated “I think it’s really valuable

65

to work in an interactive environment, [because] you can go back and ask a data structure

‘what did you do?’ or you can add three lines and save off the state in some way.” Similarly,

IP10 said “If you have a black box that is a [machine learning algorithm] and it produces

numbers in the end, then you have no idea what actually happened. So you need to be able

to look inside the state of the algorithm and see what is happening, just like you would a

program.”

These tools work well for machine learning experts who know how to structure their code

and can understand the inner workings of the algorithms. They are hard for non-experts to

use. There is still a good deal of work that needs to go into connecting feature matrices and

results in Matlab to raw data. In contrast to propagating the misconception that machine

learning algorithms can be treated as black boxes, tools need to support the role of the

programmer. Programers often have domain knowledge about data, the ability to collect

data, and the ability to write code to generate new features. These actions allow

programmers to embed their semantic understanding of the dataset and feature space into a

form that the machine learning algorithm can understand.

My studies also show that programmers working on similar data generate the same types of

features. Programmers could benefit from code reuse, but finding and integrating

appropriate code is difficult [28]. A programmer’s success in building a good model may lie

not in their knowledge of the machine learning algorithm, their familiarity with the data

domain, or even their knowledge about the existence of a informative feature. Success may

hinge on their ability to integrate feature generation code to generate that feature within

their code base.

This fact became obvious in my laboratory study. Participants used the internet to look for

prior work on digit recognition and to look for code that implemented certain feature sets. In

some cases, programmers tried to implement the same feature, but finding a working

implementation was difficult. For example, LP4 and LP10 found discussions of the same

feature when reviewing related work. LP4 was able to find an implementation of that feature

and successfully incorporate it into their system, while LP10 spent time looking for

implementations but eventually abandoned the feature. Current tools provide a common

data structure for machine learning algorithms, but fail to do the same for feature generation

algorithms. Programmers do not have a good way to find commonly used feature

generation algorithms that work well for their data types.

66

In addition to difficulties training models, my participants had a hard time evaluating models

in current tools. Tools like Weka put correctness forward as the most important evaluation

criteria, but as my interviews show, correctness is just one of many evaluation criteria that

programmers care about. Programmers need to look beyond accuracy and understand the

performance of their model in the context of an application.

Finally, I observed that the experimental process is hard to track. Recall that programmers in

my laboratory study that kept experimental journals did better than those that did not, but

their methods for tracking performance (paper logs and filenames) were brittle. Current tools

fail to help programmers track and log changes in data, code, and results. This failure can

increase the effort needed to reflect on an experimentation history and re-execute prior

experiments.

3.5 Implications for Tool Design
Disconnected tool chains are common, and in some cases unavoidable. For example, data

collection may require programmers to leave their programming environment and go into

the world to gather data. In this case, the cost of data collection is high and can’t easily be

reduced. However, in many cases the gaps between tools can be filled. For inspiration, we

can look at the programming environments that experts use. In my interviews, participants

found programming in Matlab to be particularly useful. It reduced application switching and

data conversion costs by providing a central place for programmers to load data, generate

features, choose an algorithm, run experiments, and visualize outputs.

However, tools like Matlab are still far from usable by non-experts. Many of the benefits that

experts get from Matlab are based on expert knowledge of the process, the algorithm, and

the structure of the pipeline. And experts must leave Matlab for certain types of analyses

(e.g., connecting raw data to results). Expert knowledge about the structure of the pipeline as

well as the exploratory nature of the machine learning process can be baked into tools. In

Chapters 4 and 6 I present two new tools, Gestalt and Hindsight, that support programmers

by supporting both the pipeline and the process. They bridge gaps between tools by

providing programming environments in which programmers can generate features, choose

a model, and run experiments by writing code and also explore data by visualizing data.

A good environment for exploring data helps programmers understand how their model

works. Understanding how a model works allows programmers to make more informed

67

decisions when they explore the space of possible models. New tools should be designed to

encourage data analysis, especially understanding how data and code interact with each

other. Most debugging tools focus on understanding code. Most visualization tools focus on

presenting aggregate information based on common data types (e.g,. numeric data, nominal

data, location data). Current tools do not have a good ways for programmers to easily write

code and visualize data in the same environment.

A connected tool designed for machine learning can provide new visualizations that allow

programmers to dig into classification results. For example, programmers may need to look

at the data associated with specific cells in the confusion matrix to understand a confusion.

Or they may need to look at raw data, features, and the results from experiments

side-by-side to understand the relationships between code and data. Both Hindsight and

Gestalt allow programmers to connect results to raw data, providing at best a visualization of

that that data and at worst a link to the file from which the features were generated. In

Prospect (chapter 5), I present a visualization tool designed to help programers understand

how machine learning algorithms interact with raw data.

My studies show that tracking experimentation is difficult. Programmers are unable to keep

detailed records of what they have tried in the past, and they have a hard time rerunning

experiments when they find a bug in their data. These problems can be addressed through

new tools that automatically track experimentation. These tools can provide visualizations

that allow programmers to explore old experimental results, provide automated suggestions

based on analyzing the experimental history, and provide new interactions that

automatically run a series of experiments based on common tasks. For example, such a tool

could respond to a bug in the experimental design by invalidating prior experiments and

providing suggestions for modifying existing experiments so that results could be trusted. It

could provide comparisons between old results and new results to help programmers revisit

assumptions about the performance of prior features, datasets, and algorithms. Hindsight is

an example of such a tool.

3.5.1 Limitations

My studies provide useful abstractions for understanding and supporting the process of

training a model. For example, my interviews and laboratory studies point to the importance

of exploration and experimentation to understanding the behavior of a trained model.

Understanding helps inform the exploration of possible programs, and this is key to training

68

good models. However, these are just the first of many studies that should explore this

space. Additional work can expand the coverage of my results.

I interviewed computer science researchers. This population is ideal for an initial study

because they are both early adopters of new technology and skilled programmers. However,

there are many other populations that are looking to machine learning to help them solve

their problems. For example, companies like Google and Microsoft use large scale machine

learning systems to power their search infrastructure. Programmers at these companies will

have difficulties understanding the behavior of their model and following an exploratory

process. In contrast to our researchers, they may not have access to machine learning

experts to pull them through difficult situations. Additionally their systems may need to be

more robust, because they are being deployed in products. By studying different populations

of programmers, future studies can provide a richer understanding of the machine learning

process.

My laboratory studies look specifically at classification. These studies can be expanded to

look at other machine learning techniques. For example, with clustering algorithms

programmers do not have ground truth labels. In these situations, analysis may be more

important. Programmers don’t have a semantic understanding of what a cluster means. A

semantic understanding is often necessary to use clusters effectively. Therefore, they may

need to analyze the contents of the clusters in order to ensure that the clusters make sense.

My laboratory studies were conducted during one four hour session. This study’s tasks were

constructed to fit within this time frame. I provided structure that programmers normally

wouldn’t have. New studies should look at how different programmers construct a machine

learning tool chain. These studies could analyze source code from existing open source

machine learning projects, or they could observe students trying a model from scratch

within a classroom setting. A longitudinal study could complement current observations by

looking at how experimental tracking strategies help programmers recreate experiments

weeks or months after they build an initial model.

3.6 Summary
In this chapter, I presented results from two studies that look at the difficulties programmers

face when using machine learning to train a model. My studies of researchers allowed me to

observe the process programmers take when using machine learning, and my laboratory

69

studies provided grounded observations of the breakdowns in this process. Based on these

studies, I found that programmers have a hard time structuring a pipeline, understanding the

behavior of their model, and evaluating the performance of their model. I discuss

breakdowns in current machine learning tools and provide design implications for new

machine learning tools.

I found that classification is a popular and powerful machine learning technique. Building a

classifier involves creating a data flow called the classification pipeline, which is a series of

steps that transform raw data into a model. The classification pipeline is constructed through

the machine learning process, which involves running experiments and analyzing results to

explore the space of possible models. The next chapter presents Gestalt, a tool designed to

help programmers write code to implement a classification pipeline and analyze data to

understand the behavior of that pipeline.

70

71

Chapter 4 | GESTALT

Current general-purpose programming tools are not designed to deal with data, rather they

focus on creating and managing code. Because the behavior of a model is based on both

the data and the code, when training a model programmers need tools support working with

both code and data. The traditional solution to this problem has been to constrain the data

domain. Such constraints make training a model more accessible to the point that

non-programmers can train models for these domains.

These domain-specific tools hide complexity in the interest of usability. For example,

Crayons uses a coloring metaphor for training image segmentation functions [45,46]. Users

can easily provide the Crayons with data by coloring but they cannot change the feature

generation or classification algorithms. Similar techniques have been used in a number

other domains, such as sensor-based interaction and computer vision systems [54,91].

The domain-specific nature of such tools is both a strength and a weakness. Domain

knowledge allows tools to limit the decisions required for a programmer to train a model.

But these same limitations also constrain the programmer if a tool’s assumptions do not

match the programmer’s needs.

In this chapter, I ask the question: “How do we create a general-purpose programming tool

that supports machine learning?” Such a tool would need to work across different data

domains, provide support for writing code, and provide support for analyzing data.

As an exploration into the space of general-purpose programming tools for machine

72

parse
data

generate
features

train
model

test
model

raw data
parsed

data features model results

3,71 1.23 ,78 .91

-1.2 3.21 .9 .04

5.2 -1 9.7 2.4

8.2 3.14 .87 0

31 29 13 23

12 79 0 3

32 13 10 21

1 7 6 72

+
-

consistent;
production; unit;
Hollywood; hit;
home; run;

0 1 1 0

0 0 1 1

1 0 0 1

1 1 0 1

231 329

121 702
+

-
++
+ +

--
-

-

sentiment analysis

gesture recognition

Figure 4.1: Both gesture recognition and sentiment analysis share a common high level

data flow structure called the classification pipeline. Although the structure of the classi-

fication pipeline is the same, the logic of each step in the data flow is different.

learning, I have developed Gestalt. Gestalt helps programmers train models by supporting

the entire machine learning process. Gestalt demonstrates new solutions to problems with

current machine learning tool chains described in my previous studies. Specifically, it

removes gaps between tools, allowing programmers to represent their classification pipeline

and analyze data as it moves through that pipeline. In this chapter, I discuss how Gestalt

builds upon findings from my studies to support the machine learning process, and I present

results from a debugging study in which programmers using Gestalt found and fixed more

bugs than with a state-of-the-art baseline tool.

4.1 The Machine Learning Process
In my previous studies, I observed that there is a structured process that programmers follow

to train a model. I called this process the machine learning process. The machine learning

process involves two high-level tasks: implementing a classification pipeline and analyzing

data as it moves through that pipeline.

Implementation requires both the creation of a classification pipeline and collection of data

to train and test that pipeline. Figure 4.1 shows two example pipelines, in which data is

transformed into discrete examples, features are computed over each example, a

classification algorithm is used to train a model, and the accuracy of that model is evaluated.

73

Not all pipelines are identical, but their structure is similar: a linear progression of

computation that transforms data into a model that can be experimentally evaluated.

Analysis allows programmers to understand the behavior of a classification pipeline by

examining how data moves through that pipeline. Beyond the correctness of any individual

line of code, analysis requires developing an understanding of complex relationships

between data, features, and model output. In addition to final model output, this requires

examination of intermediate data to ensure that each step in the pipeline behaves as

expected. Programmers examine whether data is correctly parsed and discretized, whether

features are correctly computed, and whether the overall performance is sufficient for a

problem.

Although the structure of a classification pipeline is linear, the process of implementing and

analyzing it is not. Analysis of a current implementation informs a programmer’s next

implementation action. Programmers often revisit prior steps, such as collecting additional

data, debugging implementation of features, brainstorming new features, or reconsidering

their classification algorithm. The process of applying machine learning thus requires

repeated transition between implementation and analysis. Gestalt is defined by supporting

both implementation and analysis so that these transitions can be fast, fluid, and easy.

4.2 Providing General Purpose Support
This section introduces two canonical classification problems: movie review sentiment

analysis and pen-based gesture recognition. I discuss important differences between these

problems, as these differences illustrate a range of support needed in a general-purpose tool.

I then discuss their similarity, as their common structure provides the basis for Gestalt’s

integrated support.

4.2.1 Two Canonical Problems

Sentiment analysis consists of categorizing text (e.g., movie reviews) according to some

sentiment expressed in that text (e.g., whether a reviewer had a positive or negative

impression of the movie). A canonical machine learning solution was developed by Pang et

al. [107]. Following Pang et al.’s process, a programmer collects positive and negative movie

reviews, formats reviews to plain text, and computes word-count features (the number of

times the word appears in the review). They then prune words that are too common, too

74

rare, or not descriptive. The resulting pipeline can be evaluated in a standard cross-validation

experiment. This involves randomly splitting data into testing and training sets, creating

models using the training sets, and evaluating the accuracy of those models on the test sets.

Pen-based gesture recognition is well studied, with Rubine providing a canonical

approach [114]. A programmer collects strokes defined as sets of (𝑥, 𝑦, 𝑡) triples, where 𝑥 and

𝑦 are 2D points and 𝑡 is time. Because different people may draw the same gesture

differently, data is typically collected from a large pool of people to help ensure trained

models are robust to such variance. Strokes are normalized by rotating, translating, and

scaling them to facilitate comparison. The normalized strokes are then used to compute

features (e.g., the length of the stroke, measures of angles in the stroke). Cross-validation

experiments then evaluate the pipeline.

4.2.2 Differences

Sentiment analysis is a two-class problem, whereas gesture recognition is multi-class. In the

sentiment problem, classification errors are binary (i.e., reviews can be only positive or

negative). In the gesture problem, it also matters how an example is misclassified. For

example, it is important to know if rectangles are commonly misclassified as triangles. This

added information can help a programmer identify the part of the pipeline responsible for

that error.

These problems also differ in the visual representation of their data. Pen-based gestures have

a natural and compact visual representation. A programmer can easily verify the label of a

gesture by simply looking at a drawing of the stroke. In contrast, the sentiment of movie

reviews requires significantly more time and effort to interpret. Movie reviews also human

verifiable but require more attention than a gesture.

These problems also illustrate differing interpretability of their features, including verifiability

and sparseness. Individual values of sentiment features are easier to verify. A programmer

can quickly check the value of a word-count feature against the text of a review. In contrast,

it is difficult to gauge the correctness of angle values and distances computed over the

normalized points of a gesture. Additionally, sentiment features are sparse. Each review has

a large number of features, most word-count values are zero, and only non-zero values have

an effect on the final model. In contrast, the gesture recognition problem is defined by a

small set of dense features, where each feature may have a distinct value and an effect on

75

the trained model.

A final difference is how models are evaluated in cross-validation experiments. Random

splitting of data into training and testing sets is generally effective for sentiment analysis and

other problems. Applied to gesture recognition, however, it can be misleading. The way a

person draws a gesture is often consistent for that individual, but can differ widely across

people. Randomly sampling the dataset ignores this property. Consequently, data from an

individual can be in both the training and testing sets. Because the goal is to evaluate how

well a model is likely to generalize onto people who are not in the training set, leave-one-out

cross-validation is instead a better choice. Models are trained with data from all but one

person, then tested with data from that person.

4.2.3 Similarities

An important similarity is that the code for both sentiment analysis and gesture recognition

has a similar high-level structure. This same structure is shared by many different

classification problems. Although code to train a model is different at nearly every step,

Figure 4.1 shows that they can both be represented as a classification pipeline. Both separate

data into discrete examples, compute features describing each example, and conduct

experiments that identify sets of examples that are correctly or incorrectly classified by the

model.

This common structure provides leverage for a general-purpose tool. In the development of

Gestalt, I examined how an integrated environment can provide necessary flexibility at every

stage of a process while also leveraging this common structure to make programmers more

effective when they train models.

As mentioned previously, the data for both problems is visual and examples are discrete.

Visualizations for both problems are also easy to understand without domain expertise. In

contrast, there are problems that are harder to visualize. For example, a programmer trying

to recognize activity from sensor streams may need to combine many different streams and

then run transforms that take those streams and project them onto some sort of frequency

data space. Visualizations of the frequency space are hard to understand for programmers

without experience in both signal processing and the data domain.

Additionally, both problems are easily solved using small datasets and simple algorithms. This

means that programmers can train models and get feedback in real time. Real time feedback

76

enables an interactive loop where programmers can make changes to their classification

pipeline and quickly get results. In contrast, there are problems where large datasets or

complex algorithms are needed to train a useful model. For example, training state-of-the-art

video recognizers requires large datasets and a lot of computational resources [84].

The previous two similarities are important for my study. The ideas behind Gestalt can be

scaled to situations where domain expertise is needed and where feedback is delayed (e.g.,

when feedback is delayed and when visualizing data is hard). However, for the purpose of

running a laboratory study to evaluate Gestalt, I chose problems that are both interpretable

and can be trained in real time.

4.3 Gestalt
Programmers interact with a classification pipeline in Gestalt through two high-level

perspectives: an implementation perspective and an analysis perspective (Figure 4.2). This

parallels the common distinction between coding and debugging perspectives in modern

development environments (e.g., Eclipse, Microsoft Visual Studio). The implementation

perspective allows programmers to edit code and manage the classification pipeline. The

analysis perspective visualizes the information computed as data moves through that

pipeline. This section describes the specific capabilities of Gestalt and discusses how these

capabilities work together to support programmers as they implement a pipeline, analyze

data, and transition between these perspectives.

4.3.1 Providing Structure While Maintaining Flexibility
How do I represent my problem?

Domain-specific tools use an understanding of a particular machine learning problem to

constrain and hide some parts of the classification pipeline, exposing only some of the parts

a programmer needs to interact with to train a model. For example, Crayons allows

programmers to input data and see the output of a model, but provides no control over the

features or the learning algorithm [45,46]. Crayons achieves its ease of use by cloaking this

complexity. However, reducing complexity comes at the cost of flexibility. For example, it is

impossible to directly modify Crayons to solve a different machine learning problem, even if

that problem has a similar classification pipeline.

A key realization in the development of Gestalt was that general support cannot be achieved

77

circle 4.3

square 1.2

implementation

analysis

a.

b.

c.

d.

e.

Figure 4.2: The implementation perspective provides programmers with structure through

its classification pipeline view (a) and flexibility by allowing them to write code to repre-

sent their specific problem (b). A common data structure (c), shared between analysis

and implementation, allows programmers to quickly switch between the two tasks. The

analysis perspective allows programmers to interact with the provided visualizations (e)

by filtering, sorting, and coloring (d).

78

by hiding steps in the pipeline. The classification pipeline is similar for many problems, but

the relative importance of different steps varies from problem to problem. Gestalt provides

general support through a structured set of explicit steps with standardized inputs and

outputs (Figure 4.2a). Gestalt preserves flexibility by defining each step using IronPython

scripts written in a built-in text editor (Figure 4.2b). This combination provides an explicit

structure without constraining what a programmer can do within that structure. Gestalt thus

provides the same flexibility as general-purpose programming environments (e.g., Eclipse,

Matlab).

Gestalt’s explicit structure provides a basis for its other functionality. For example, Figure 4.2a

shows how Gestalt can help programmers locate execution errors within specific steps. A

circle next to each step is colored grey, yellow, green, or red according to whether the step

still needs to be executed, is currently being executed, was executed successfully, or failed

due to an execution error. The structured and typed sequence of steps also allows Gestalt to

capture and visualize computation at intermediate steps throughout the pipeline. Capturing

intermediate data provides standard memo-izing benefits [92]. In the context of training a

model, intermediate data also provides additional analysis benefits. Each step can be used as

a launching point for analysis, helping programmers better understand the behavior of their

model through inspection of the input and output at each step.

4.3.2 Appropriate Data Structure
Where do I store my data?

Implementing a classification pipeline requires loading data and storing it in some

representation for use throughout the remainder of the pipeline. Domain-specific tools can

hide the details of data storage and management, but these decisions cannot be hidden in

general-purpose tools. Data comes in many forms and sizes, so effective data management

is a requirement for general-purpose tools.

Gestalt stores all information from the entire classification pipeline in a relational data table.

Relational tables are a natural representation for discrete examples with many features.

Because of this, they are also the backbone of many other general-purpose tools (e.g., Weka,

Tableau). Gestalt differs from such tools because they do not address the entire classification

pipeline (e.g., Weka focuses on a library of machine learning algorithms, and Tableau focuses

on powerful visualizations of tabular data). Despite their common tabular nature, data

79

representations in such tools are not identical. Programmers using combinations of tools to

address an entire pipeline must therefore explicitly attend to format conversion. The

narrowed focus of each tool also means that information is often lost or unavailable when

converting between tools. For example, Weka and other tools that represent examples as

vectors of features generally lack support for examining the original data used to compute

those features1.

Gestalt’s use of a single unified table means programmers are freed from managing data

conversion or moving data between tools. This freedom is critical to enabling fluid and easy

movement between interpretation and analysis. Gestalt’s data representation also

implements several enhancements to a standard table. First, feature columns are typed and

tagged according to where they are used in the classification pipeline. All features can be

used to summarize, visualize, and interact with data, but only some of those features can be

used by a classification algorithm to train a model. Tagging of columns allows programmers

to specify and Gestalt to track which features should be used by a classification algorithm to

train a model. Instead of creating a separate data table in each step of the pipeline, Gestalt

uses a cascaded table structure to reduce the overhead of storing intermediate data. Finally,

Gestalt provides a sparse representation for storing large sets of sparse features found in

many problems (e.g., sentiment analysis).

4.3.3 Visualizing and Aggregating Examples
How do I see my data?

Programmers reason about model behavior by examining data and its relationship to

features and classification results. Domain-specific tools generally include a visual

component that provides this feedback. This visual component allows programmers to

examine individual examples as well as compare multiple examples. For example, Crayons

presents images with translucent highlights indicating how pixels are classified by a trained

model. This shows how individual examples are classified (individual pixels) and also

provides relevant examples for comparison (the other pixels in the image).

Gestalt’s support for many data types is enabled by a key distinction between individual and

aggregate visualizations. It is impossible for a general tool to provide pre-packaged

visualizations for all possible types of data. Gestalt instead supports data visualization by

1The raw data is typically not propagated forward by the feature generation script.

80

a. b.

Figure 4.3: By looking at the raw data next to the features computed from that data, pro-

grammers can better understand the behavior of theirmodel. Here a programmer is shown

a thumbnail of movie review data (a). The programmer clicks on the thumbnail to examine

the raw data, features computed from it, and the fact that it is currently misclassified (b).

separating the logic needed to view one example from the logic to combine many single

examples into an aggregate view. Programmers can write code to visualize an example, and

Gestalt then integrates it into aggregate visualizations throughout the pipeline. Two

examples of aggregate visualizations are the grid view (Figure 4.3a, 4.4a, 4.4c) and the table

view (Figure 4.3b).

Note that aggregate views begin to demonstrate how Gestalt’s capabilities work together to

create an integrated environment. Gestalt’s structured representation of the classification

pipeline defines boundaries between steps where programmers can use aggregate views to

gain insight into their data. Gestalt’s emphasis on code-based flexibility allows programmers

to adapt those visualizations to meet the needs of their particular data.

4.3.4 Interactive, Connected Visualizations
How can I relate my data, feature and results?

Classification datasets are composed of discrete examples (e.g., gestures or documents) with

associated ground truth labels. Experiments provide predicted labels for examples. Grouping

and summarizing examples can help a programmer understand a classification pipeline.

Gestalt’s analysis perspective emphasizes interactive visualizations, inspired by work in

interactive visualization tools [126]. Support is provided for faceted browsing, filtering,

sorting, and coloring examples. Grouping and summarization operations can be applied

according to feature values, according to columns added to examples by steps in the

classification pipeline, and according to tags added to examples by a programmer.

81

A
ct

u
al

 C
la

ss 194

123

133

195

triangle rectangle

tr
ia
n
gl
e

re
ct
an

gl
e

Classified Asa. b. c.

Figure 4.4: In Gestalt, programmers can use faceted browsing techniques to understand

data. Here, a programmer tries to understand why triangles are confused with rectangles

by filtering the full set of examples (a) through a click on a confusion matrix cell (b). The

filtered examples (c) show that the confusion is due to mislabeled data.

Gestalt’s support for machine learning goes beyond prior general-purpose visualization tools

by connecting data generated across the entire classification pipeline. The coloring

metaphor in Crayons is effective in part because it connects the pipeline’s beginning

(labeling data) and end (analyzing model classification) within a single visualization. Gestalt

generalizes this with visualizations that connect data from different steps in the pipeline to

help programmers understand relationships between data, features, and results.

Figure 4.3 shows one approach to a connected visualization: side-by-side presentation of

information about the same example from different parts of the pipeline. Working on a

sentiment analysis problem, a programmer hovers over an item in a grid view to see a

preview of the document. They then click into the grid for a side-by-side view of the

document, its computed features, and its predicted label. Pulling this into a single view

allows a programmer to understand how an example moved through the pipeline.

A second approach to connected visualizations emphasizes filtering and grouping examples

based on information from different steps in the pipeline. Figure 4.4 presents an example of a

programmer clicking into a confusion matrix to isolate examples labeled as triangles and

classified as rectangles. In this case, it seems likely that several of these instances are

mislabeled. As another example, a programmer might apply a filter to isolate examples that

have a particular feature value. Examining these might suggest a potential bug in the code

that computes the feature. Connected visualizations allow programmers to quickly assemble

the information needed to examine such questions.

82

4.3.5 The "Gestalt" of Gestalt

Each of Gestalt’s capabilities is important, but Gestalt’s real power comes from how they

relate and are combined. Figure 4.4’s clicking into a confusion matrix to see misclassified

examples requires a structured understanding of the pipeline, the flexibility to implement an

appropriate visualization of the individual examples, and a data representation capturing

how each example moved through the pipeline. All of these pieces work together.

As a whole, these capabilities serve to accelerate the interactive loop of the machine learning

process: programmers can more quickly implement and analyze different potential versions

of a trained model. Gestalt’s approach provides both structure and flexibility for rapid

implementation, the shared data table removes data conversion and management to make it

easy to switch between implementation and analysis, and connected visualizations allow

programmers to quickly analyze the important parts of their classification pipeline.

4.4 Evaluating Bug Finding in Gestalt
My study compared debugging performance for participants using Gestalt with a baseline

condition similar to Matlab. Recall that my interviews found that machine learning experts

find that Matlab and other mathematical computing environments do the best job of

supporting the machine learning process. This section describes the baseline tool and the

method for the study.

4.4.1 Why Matlab?

In my interviews, machine learning experts preferred Matlab. Matlab supports the machine

learning process better than most programming environments. Matrices are first-class

objects, a good fit for tabular data representations. Many machine learning algorithms

include solving linear algebra problems, also well-supported by Matlab. Matlab makes

analysis easier by reducing the need to write boilerplate code needed to sort, filter, and

create basic visualizations. Finally, Matlab provides sufficient functionality to reduce the

overhead of switching between applications and connecting information across tools.

Despite these advantages of a connected environment like Matlab, it still falls short in

addressing the difficulties programmers face when training a model using machine learning.

Programmers must still construct a classification pipeline from scratch, as the environment

does not understand the structure of the problem being solved. Matlab’s data representation

83

representing
data flow

storing
data

B
as

el
in

e
G

es
ta

lt
launching

visualizations

plot(table[x],
 table[y])

1

1

2

1

.1 2.3

.32 5.9

.43 8.4

-.5 2.0

triangle

triangle

check

triangle

triangle

x

check

carrot

1

1

2

1

.1 2.3

.32 5.9

.43 8.4

-.5 2.0

triangle

triangle

check

triangle

triangle

x

check

carrot

Figure 4.5: The baseline condition is different than Gestalt in three ways: data tables are

not connected across different steps in the pipeline, visualizations are created using scripts

rather than an interactive analysis perspective, and data flow is represented in files rather

than a classification pipeline perspective.

has not been designed for machine learning, and all elements in a matrix are of a single

datatype. Programmers therefore must maintain multiple parallel matrices to store raw data,

numerical features, nominal (i.e., string) features, and feature names. Finally, Matlab

visualizations are simple charts. They do not support the aggregation or visualization of raw

data, interactively grouping examples within visualizations, or connecting information

between different steps in the machine learning process. To support any of these

capabilities, programmers would need to rewrite most of the functionality provided by

Gestalt within Matlab.

4.4.2 Baseline vs. Gestalt

The baseline condition was a general-purpose development environment in which

participants created, edited, and executed scripts. Like in Matlab, participants created

visualizations by calling functions and writing scripts to sort, filter, and color. I provided an

API with which could be used to reproduce all of Gestalt’s visualizations. Figure 4.5 shows a

breakdown the differences between the baseline and Gestalt.

84

The baseline condition and Gestalt used the same data table structure to store data. Unlike

Gestalt, the data table in the baseline did not keep track of information generated across the

pipeline (Figure 4.5 left). Participants had to write code to connect raw data, feature values,

and classification results or to create side-by-side visualizations.

The baseline condition also didn’t have the interactive visualization capabilities of Gestalt

(Figure 4.5 middle). Programmers had to write code to filter, sort, and color examples. This is

consistent with how visualizations are accessed in Matlab. I provided instructions and

sample code for all of the visualization functionality of Gestalt.

The final difference was in how the baseline tool and Gestalt organized code (Figure 4.5

right). In Gestalt the code is organized and accessed through the representation of the

classification pipeline. In the baseline the code is organized in files sorted alphabetically,

similar to most programming environments. The decomposition of the data flow is the

same, there is a file in the baseline that corresponds to each step in the Gestalt’s classification

pipeline, and there is an all.py file that executes the files sequentially.

Other than these differences, Gestalt and the baseline were identical. The entire process was

integrated, all of the code for the learning process was written within the same framework,

using the same data structures, with the same programming language. I chose this study

design, instead of a design that compared Gestalt directly to Matlab, because I wanted to

increase my confidence that observed differences were due to the functionality of Gestalt

and not other differences, such as the syntax of the programming language.

4.4.3 Participants

I recruited 8 participants (6 male, 2 female) for the study. All were computer science

graduate students. All had some experience programming in Python, had taken at least one

course that taught machine learning algorithms, and had worked on at least one project that

used classification. This population is consistent with the target audience of Gestalt:

programmers with some prior experience in machine learning.

4.4.4 Study Design

The study was a within-subjects design, comparing Gestalt with the baseline across two

debugging tasks. To account for carryover or interaction effects based on the ordering of

interface conditions (i.e., ordering or pairing of interface and task), I counterbalanced the task

85

with condition (Gestalt and baseline) and order (first and second).

The dependent measures included the number of bugs found and the number of bugs fixed

within the one-hour time span of each task. A bug was counted as found if the participant

verbalized the root cause. For example, “The data is mislabeled” or “This line of code should

be using this variable instead”. If the participant just speculated about the cause, the bug

would not be counted as found.

I did not measure time to fix a bug, because it was not feasible to ascertain which bug a

participant was working on at any given time. Participants were cognizant of the existence

of multiple bugs. While trying to find and fix a primary bug, participants often gathered

information needed to find and fix other bugs. Instead of the time to fix each bug, I focus on

such measurements as the time spent in various visualizations over the entire study.

4.4.5 Sentiment Analysis and Gesture Recognition Tasks

Participants debugged solutions for the two problems discussed earlier: sentiment analysis

and gesture recognition. Each contained data and five scripts: parsing, features,
splitting, training, and testing. I created working solutions for both Gestalt and the

baseline, then injected five bugs into each solution. Bugs were limited to the data and the

first three files (parsing, features, and splitting).

The code for the baseline and Gestalt differed only in how scripts were called and how data

was maintained between steps. Participants accessed the scripts by double-clicking on file

names in the baseline conditions and double-clicking on steps in the pipeline in the baseline

condition. These factors were intrinsic to the differences measured in the results. Some of

the properties of the problems were described previously; here, I elaborate on those

descriptions and provide details about their implementation.

The sentiment analysis task classified movie reviews as positive or negative. I used 1,000

negative and 1,000 positive reviews from a standard sentiment analysis dataset [107]. I

computed word-count features, built a Naïve Bayes model, and evaluated the model using

three-fold cross-validation. After creating a working classification pipeline, I introduced the

bugs into the sentiment analysis problems. The following are the bugs that I introduced

along with the associated step in the classification pipeline.

S1 The labels for 300 positive and 300 negative examples were swapped (in data).

86

S2 An extra for loop was added so that positive examples were read in twice (in

parsing).

S3 Removing stop words (e.g., common words such as “the” and “a”) is a common

processing step in feature generation for text documents. A misplaced negation

operator was inserted so that instead of removing stop words the code removes

everything except for stop words (in features).

S4 In the loop that iterates over the features, the counter that moves through feature

indices is not incremented. This leads updates for only one feature. (in features).

S5 The test sets are the same as the training sets (in splitting).

The gesture recognition task involved training a model that classifies a pen-stroke as one of

16 different gestures. I used a standard dataset of 5280 gestures collected from 11 different

people [138]. I normalized strokes, computed features, built a Rubine model, and evaluated

using per-person cross-validation. I introduced the following bugs:

G1 The labels for some of the gestures were changed, such that 30 triangles were

labeled as rectangles, 30 rectangles were labeled as triangles, 30 circles were

labeled as stars, 30 stars were labeled as circles, 30 carets were labels as checks,

and 30 checks were labeled as carets (in data).

G2 The XML files for the gesture data had data stored in the following order (𝑥, 𝑦, 𝑡), but
the code loaded the data in the wrong order (𝑡, 𝑥, 𝑦) (in parsing).

G3 The code that loads examples skipped over some of the data so not all of the

examples were loaded (in parsing).

G4 The code for computing sine and cosine values was the same for one of the

features (in features).

G5 The cross-validation always tests on the same person regardless of the training set

(in splitting).

I chose all of the bugs based on common programming errors or common machine learning

process errors. For example, earlier versions of the Pang et al. dataset included problems

with mislabeled data that were later discovered and reported [107]. The cross-validation bug

in the gesture recognition task is the same one reported by Hodges and Pollack in their

work [61]. Other bugs were based on common mistakes, such copy-paste errors [69].

Participants were told that (except for the actual training and testing of the model) there

could be bugs at any step in the pipeline. This included bugs in the raw data. They were

87

assured the structure of the pipeline was correct and the task was not one of feature

generation or algorithm development. As a stopping condition, they were given a target

accuracy range suggesting they had fixed all of the bugs. This was a realistic stopping

criterion in the context of the task, debugging existing machine learning programs that were

known to have achieved a certain level of accuracy in the past.

Data-labeling bugs in each task would have taken more time to fix than was allotted. To

make fixing mislabeled data tractable, participants had to clearly state why examples were

mislabeled (associate the mislabeling with bad data rather than a programming error). I then

pointed them to a directory containing correctly labeled data.

Finally, because the inserted bugs interacted with each other, the accuracy of the model

could increase or decrease erratically (even going above the target accuracy). This was a

deliberate choice; erroneously high accuracy values may be more dangerous because they

provide a false sense of success. Additionally, it can often be the case that an existing

solution may have multiple bugs and reported accuracy itself may not be the best metric for

debugging.

4.4.6 Procedure

After providing consent, participants completed a one-page survey detailing their prior

machine learning and Python experience. The experimenter provided a document detailing

the first task. Both tasks were presented as salvaging code written by another programmer.

The document detailed the steps taken by the previous programmer, and participants were

informed the programmer had chosen a good strategy but there were mistakes in the

execution. After explaining the task, the experimenter provided participants a one-page

questionnaire asking what tools they would normally use to implement the outlined task.

After completing the questionnaire, participants followed a tutorial on each tool. In the

Gestalt condition, the tutorial discussed the capabilities of the implementation and analysis

perspectives. The baseline tutorial contained information about the capabilities of the editor

and the visualization API. After the tutorials, the experimenter provided quick reference

sheets for the included APIs. Because I was studying the effect of Gestalt’s novel capabilities

and not the usability or learnability of the model, participants were told they could use the

experimenter as an intelligent help system during the task. This included asking questions

about APIs, visualizations, the classification problems, and error messages.

88

p6 baseline

gestalt (3.75/4.25)baseline (2.75/2.88)

p1 baseline

p7 gestalt

p8 gestalt

p2 gestalt

1 2 3 4 51 2 3 4 5 first

p3 baseline

p5 baseline

p4 gestalt

sentimentgesturesfixedfound

Figure 4.6: Programmers found and fixed significantly more bugs in the Gestalt condition.

Participants were asked to talk aloud, describing their progress in the debugging process.

Participants were told the experimenter might ask questions about their state or current

action. They were asked to choose among five distinct states: (1) I have no idea what the

bug is, (2) I have a guess, (3) I’m checking my guess, (4) I’m fixing the bug, and (5) I’m

confident I fixed the bug. Participants were given one hour to complete the task. After they

finished, the experimenter saved their data and started the next task, providing descriptions

of the new machine learning problem and the new development environment.

After completing the second task, participants were given a final questionnaire asking them

to rate the usefulness of the visualizations and faceted search capabilities. They were also

asked to compare the two development environments and to compare to the existing tools

they had reported they would use for these tasks. Participants then completed a recording

consent form and were paid $50 for their time. The entire study took between 3 and 3.5

hours.

4.4.7 Results

Participants unanimously preferred Gestalt and were able to find and fix more bugs using

Gestalt than using the baseline. Figure 4.6 shows an overview of bugs per condition. To

89

examine found and fixed measures, I conducted a mixed-model analysis of variance. I

modeled participant as a random effect and modeled condition (Gestalt vs. baseline), task

(sentiment analysis vs. gesture recognition), and trial (first vs. second) as fixed effects. I also

modeled the interactions 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 × 𝑡𝑟𝑖𝑎𝑙 and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 × 𝑡𝑎𝑠𝑘. I used these same

independent variables in all of the analyses reported in this section.

I found a marginal effect of trial on the number of bugs found, with participants finding more

in the second trial (3.1 vs. 4.0 bugs, 𝐹(1, 5) = 4.62, 𝑝 ≈ .084). This suggests some learning,

as there were commonalities among the bugs in the two tasks. I verified the interaction

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 × 𝑡𝑟𝑖𝑎𝑙 was not significant (𝑝 > .42), confirming the effectiveness of the

counterbalanced design. Participants in the Gestalt condition thus found significantly more

bugs (4.25 vs. 2.88 bugs, 𝐹(1, 5) = 11.42, 𝑝 ≈ .019).

I also found a marginal effect of trial for bugs fixed (2.88 vs. 3.63 bugs, 𝐹(1, 5) = 4.09,
𝑝 ≈ .099) and again confirmed the counterbalance effectiveness by verifying the lack of

significant interaction 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 × 𝑡𝑟𝑖𝑎𝑙 (𝑝 > .72). Participants in the Gestalt condition fixed

significantly more bugs (3.75 vs. 2.75 bugs, 𝐹(1, 5) = 7.27, 𝑝 ≈ .042).

4.5 Discussion
This section discusses how Gestalt was used, the process participants followed to solve

machine learning problems, and possible explanations for Gestalt’s better performance. The

observations are grounded in answers to free response questions from the study

questionnaire and in secondary measures of performance.

4.5.1 The Importance of Structure

I hypothesized a structured representation would be most useful when programmers first

started a project, as it would be less daunting than a blank slate. Because I provided a mostly

working implementation of the project, I felt the importance of structure would be

diminished in the study. Consequently, I did not explicitly ask participants whether they

found the structure helpful.

However, I included open-ended questions asking participants what capabilities they found

the most useful. In this open-ended portion of the questionnaire, five of eight participants

said the explicit structure provided by viewing and interacting with the classification pipeline

was one of the most useful components of Gestalt. They stated they would like to see it in

90

their own tools, with one participant writing: “The [classification pipeline view] was very

helpful. When I am running these types of experiments, I often get lost in all of the

processing steps. This seems like a useful way to organize the workflow.”

Participants may have found the structure useful for a number of reasons. For example, as

the previous participant notes, the structure offloads the mental effort needed to navigate a

complex project and localize errors. If the participant suspected that there is an error in

loading data, they could focus their attention on a specific part of the code. This effect may

be magnified because participants were working with other people’s code. Instead of

spending time understanding the data flow by looking at model output and tracking code

through files, participants could see the sequential data flow and the inputs and outputs to

each step.

4.5.2 Creating Individual Example Visualizations

Even though I provided standard visualizations of the individual examples in both conditions,

some participants tried to visualize examples on their own. Both the baseline and the Gestalt

conditions provided developers with the ability to make charts, including the ability to plot

points. Two participants in the baseline condition (P5 and P7) visualized gestures by using a

scatter plot to plot the (𝑥, 𝑦) coordinates of each point in the stroke. They did this because

they did not trust the example-specific visualizations we had given them. Those

visualizations looked wrong because (𝑥, 𝑦) coordinates of the gestures were incorrectly

parsed (bug G2).

Recall that Gestalt relies on programmers to create example-specific visualizations, which it

aggregates to provide programmers dataset visualizations. One might ask, ”is it reasonable to

expect programmers to build example-specific visualizations?” These results suggest the

answer is yes. Programmers need to see data to be able to debug the performance of their

model, and they can and will develop quick, simple visualizations of raw data when given

proper tools.

4.5.3 The Need for Connectivity

Participants in both conditions actively tried to relate feature values and results to their raw

data. Gestalt’s connected visualizations make it easy to compare data, features, and

classification results. When taken away in the baseline, participants expressed frustration.

One participant, who worked in Gestalt first, explicitly described that they wanted to see the

91

raw data next to the features in the baseline and was annoyed that it was not as easy as in

the prior condition.

To make up for a lack of connectivity in the baseline, three participants (P1, P3, and P8) went

to great lengths to cobble together their own side-by-side table view. Participants added

table visualization function calls at the end of the parsing and features scripts. They then

resized the tables to look at the raw data and features side-by-side. Side-by-side

visualizations seem to be a natural need for debugging machine learning programs, as two

of the three participants created them before having used Gestalt and seeing its built in

side-by-side table view.

4.5.4 Interactivity

I also observed that the interactivity of visualizations was critical. Because I logged the active

window as well as input (e.g., mouse clicks, key strokes), I could determine if participants

spent their time implementing or analyzing. Participants in Gestalt spent significantly more

time analyzing instead of writing code (37.3% vs. 18.9%, 𝐹(1, 5) = 5.44, 𝑝 ≈ 0.001).

Participants in the Gestalt condition also used more kinds of views. In the post study

questionnaire, I asked participants to tell me which faceted search capabilities (e.g., filtering)

and views they used (e.g., grid view). I found that participants tried significantly more views

in the Gestalt condition (3.4 vs. 2.5 views, 𝐹(1, 5) = 18.84, 𝑝 ≈ .007) and marginally more

faceted search techniques (2.0 vs. 1.1 techniques, 𝐹(1, 5) = 5.44, 𝑝 ≈ 0.067).

The gesture recognition task also led participants to spend more time in visualizations (32.9%
vs. 23.3%, 𝐹(1, 5) = 11.15, 𝑝 ≈ .021), look at more views (3.4 vs. 2.5 views, 𝐹(1, 5) = 18.84,
𝑝 ≈ .0074), and use more faceted search techniques (2.3 vs. 0.9 techniques, 𝐹(1, 5) = 13.44,
𝑝 ≈ .015) than the sentiment analysis task. This result is likely because there were more

classes in the gesture condition and the data was easier to visualize. These differences

suggest that spending more time looking at more kinds of views might allow programmers

to better formulate and test possible explanations that lead them to find and fix more bugs.

In both conditions, most participants used filtering and sorting to group relevant examples.

Gestalt made this easier. One participant followed the exact process shown in Figure 4.4.

They clicked in a confusion matrix to see examples of triangles classified as rectangles, then

found the mislabeled examples.

92

4.6 Limitations
My debugging study provides evidence that supporting the machine learning process in

general purpose tools is not only possible but also useful for common programming tasks.

However, there are still limitations of this approach. In this section, I discuss limitations of the

study, Gestalt’s implementation, and of general-purpose machine learning tools.

4.6.1 Study Limitations

My study has several limitations. Both tasks had classification pipelines that could be run in

real-time (loading and processing data, generating features, training a model, testing the

model). Many important learning problems are too expensive to be computed in real-time. I

chose this limitation to allow participants to explore a large number of different bug

hypotheses within the time constraint. It is possible that Gestalt may be more useful in

situations where models take longer to train. Programmers might benefit more from using

visualizations to explore data and features while waiting for updated results in a longer

feedback cycle.

My study was also limited to finding bugs in unfamiliar code. Challenges in the middle of a

development process are different from those at the beginning, and setting up a workflow

for a learning task can be daunting. However, participants found value in Gestalt’s

classification pipeline structure, and their comments in the open-ended questionnaire lead

me to believe Gestalt’s structure will also assist programmers training a model from scratch.

My study focused on two problems for which programmers had some intuition about the

data. This intuition allowed programmers to effectively tackle the debugging task. They

knew gestures that looked similar should be in the same dataset, and they knew words in

movie review text should appear as non-zero features. Programmers may not always have

such a clear understanding of the data at the onset of the project. They may instead develop

understanding over time. Flexible visualizations seem crucial for this, as they can allow

programmers to create individual visualizations, presenting the information that will best

help them to understand their data.

4.6.2 Limitations of Gestalt

My study revealed some unexpected work patterns that suggest new opportunities for

Gestalt and other tools. Participants P7 and P8 created toy review datasets to see if reviews

93

were being correctly parsed and word counts were being correctly computed. Participant P8

also created simple strokes that consisted of a few (𝑥, 𝑦, 𝑡) points. They then manually

computed features (using pen and paper) and compared them to the values computed

during feature generation. Other participants created filters by manually selecting a small set

of examples and examining them through the entire pipeline. These behaviors collectively

suggest support for unit testing practices could be a good addition to Gestalt and other

machine learning tools.

Altough Gestalt can be used to train models for many domains, there are some domains

Gestalt does not completely support. A key limitation is that Gestalt assumes individual

examples can be processed without the context of the larger dataset. This limitation impacts

the types algorithms Gestalt supports, but also some of Gestalt’s core capabilities. For

example, the current grid and table aggregate visualizations cannot properly visualize

relationships inherent to sequential data (e.g., time-series). It is also not obvious how to

implement the interaction in Crayons, where individual pixels have meaning only in the

aggregate context of an image. New general methods for describing relationships between

examples would benefit Gestalt and future general-purpose tools.

The difficulty of implementing the core Crayons interaction within Gestalt raises a question

of whether general-purpose tools can be as effective as domain-specific tools. Both styles of

tool are important. It is almost certain that a highly-specialized tool will be more effective for

its particular problem. However, general tools provide two advantages. I have noted that the

number of domains affected by machine learning is large and growing. General tools can

support problems for which domain-specific tools have not yet been developed. Further,

distilling general mechanisms, like those in Gestalt, informs domain tools by allowing a focus

on domain-specific extensions instead of re-inventing general mechanisms.

4.7 Summary
In this chapter, I presented Gestalt. I broke down the machine learning process described in

Chapter 3 into two main tasks, implementation of a classification pipeline and analysis of the

data and results. Gestalt is built to support implementation and analysis for classification. It

provides structure for implementing a classification pipeline and interactive visualization

tools for analyzing data. Because it is an integrated tool, Gestalt makes it easy to transition

between implementation and analysis.

94

A debugging study of programmers using Gestalt versus a Matlab-like baseline shows that

Gestalt helps programmers spend more time analyzing and less time iterating on code. The

study also shows that programmers using Gestalt outperformed programmers using the

baseline at both finding and fixing bugs.

Gestalt provides a framework for programming with machine learning. However,

understanding relationships between data, features, and algorithms is still hard. In my

studies, I observed that programmers spend a lot of time tweaking parameters to algorithms

in order to get better performance. They are effectively exploring whether tweaking a

parameter leads to a better model. Algorithms and parameters, or more generally code, are

only part of what determines the behavior of a trained function. Programmers also need to

understand data. In the next chapter, I present a new technique for understanding data and a

tool called Prospect in which this technique is embedded.

95

Chapter 5 | PROSPECT

Programmers change parameters to algorithms and features to see if those changes have an

effect on performance. Parameter exploration is easy, and people take the path of least

resistance when attempting to solve problems [140]. Changing a parameter often involves

simple actions, such as renaming a function call or clicking on a checkbox. In addition,

parameter exploration is more natural for programmers than exploring data. Programmers

are used to authoring the behavior of a function. If a function is incorrect it can be fixed by

modifying code, in this case changing parameters. Consequently, for training behavior it is

natural for programmers without machine learning expertise to ascribe poor performance to

code rather than data.

Focusing solely on code doesn’t always work for training behavior, because data is as

important as code when training a model. My studies show that often simple algorithms

work well. When a function is performing poorly, real progress often comes when

programmers clean their data, collect better data, or generate descriptive features.

Understanding the relationship between data and the behavior of the learned function is

hard. To help programmers better understand data, I have created a new data analysis

technique based on aggregating predictions from multiple models.

In this chapter, I discuss my approach in the context of a new interactive visualization tool

called Prospect. I present two experiments that show how analysis using multiple models

can help programers better understand data. The first experiment shows that using multiple

models to identify potential label noise (i.e., mislabeled data) can provide a threefold

96

reduction in the number of spurious examples a programmer examines. The second

experiment shows that analyses of multiple models can identify examples that are

significantly more likely to respond to additional informative features, thus helping a

programmer focus their attention on the most relevant examples in a dataset. I conclude by

running a user evaluation, which shows that programmers can effectively use Prospect to

understand their own data.

5.1 Using Multiple Models
Prior work on visualizing the behavior of models has mostly looked at a single algorithm.

Researchers have created visualizations that help programmers better understand the

behavior of common algorithms such as decision trees, support vector machines, and Naïve

Bayes classifiers [18,22,32]. While these techniques are useful, programmers are still left with

the question: Is poor performance due to choosing a bad algorithm or using the wrong

parameters?

Programmers try many different algorithms and parameters to answer that question. When

evaluating the differences between resulting models, programmers don’t always have a

complete picture of the differences between models and the connections between those

models and the underlying data. If a support vector machine performs better than a decision

tree, there may still be examples that the decision tree consistently classifies correctly that

the support vector machine does not. There may be examples that are always classified

correctly by both algorithms. These example-level comparisons can lead to a better

understanding of the data (e.g., examples that are always misclassified might shed some light

on what is hard to classify in the dataset regardless of the algorithm).

Prospect supports deeper, example-centric comparisons by aggregating predictions from

multiple models. These comparisons allow programmers to perform new queries on their

dataset. For example, programmers can look at examples are are always classified incorrectly

by all of the model. Prospect leverages the bias-plus-variance decomposition framework for

evaluating classification algorithms [80]. This framework defines three values. Target noise is

what we are trying to find in the data, the aspects of the data are currently too hard to

distinguish. Target noise is inherent to data (i.e., it will exist even in perfect conditions).

Programmers decrease the noise in the data by providing more structure through new

descriptive features or more data.

97

Bias is the difference between the expected value and optimal (i.e., structural error of the

model). Not all models will be able to fit the data. For example, if the data is generated by a

polynomial function, a linear model will only be able to approximately fit the data. Bias

provides some notion of how well a model can do in the best case.

Variance is how much an algorithm’s predictions vary based on different training data.

Changes to cross-validation folds can help test an algorithm’s variance. It shows how

susceptible classification results are to random noise. If models vary greatly on the dataset,

they may perform poorly in real world conditions. To make a model more stable, a

programmer may need to gather more descriptive features or collect more data to train a

robust model. All models have some inherent bias and variance, but these differ between

algorithms.

The idea that multiple models can be combined to useful effect is not new. Ensemble

methods exploit intuitions about bias and variance to achieve better performance by

combining results from multiple models. Combinations of classifier outputs based on simple

rules (e.g., majority vote, sum) often produce results better than a single model [71]. Other

ensemble techniques, such as Boosting [118] and Bagging [29], automatically generate

simple models and combine them to build more accurate ensemble models. However, this

work is generally aimed at learning ensembles to directly improve accuracy. My approach

differs in that I leverage differences in biases to help programmers better understand data

independent of the underlying algorithm.

5.2 The Prospect System
In order to make correct choices about which algorithm to use, a programmer must

understand key properties inherent to the data. These properties are independent of any

particular classification algorithm. Prospect lets programmers better understand key

properties of their data by first training a collection of models and then analyzing the

behavior and output of those models. The collection of classification models acts as a lens

for scrutinizing some of the key properties of data. Figure 5.1 presents an overview of

Prospect.

98

data

(xi, yi)

configurations results

(xi, yi, ȳi,j)

stats visualizations

min

max
X

SVM

C4.5

algorithms
parameters

models

c=1

c=2

Figure 5.1: Programmers provide Prospect with the dataset they are trying to understand.

Prospect trainsmultiplemodels (based on a set of configurations) to generatemultiple pre-

dicted labels for each example in that dataset. Prospect then generates descriptive statis-

tics about the examples by aggregating those predicted labels and provides visualizations

to allow programmers to explore generated statistics.

5.2.1 Processing Data and Generating Statistics

Starting from data, Prospect first generates a set of configurations. Each configuration

defines feature selection procedures, a classification algorithm, its parameters, and other

specifications needed to completely determine a model creation process. Configurations are

generated by systematically varying algorithms and parameters throughout the process. The

goal is to create configurations that can be used to generate a collection of models with

different biases. Using the models in concert provides a new perspective on the data with

lower bias. My intuition is that by training multiple models using a diverse set of

configurations, Prospect can marginalize the individual bias of any particular model.

Prospect considers each available configuration and uses k-fold cross-validation to generate

classification results for the entire dataset. Formally, data consists of a set of examples

𝑋 = {𝑥ଵ, … , 𝑥ே}, with labels 𝑌 = {𝑦ଵ, … , 𝑦ே}, and 𝐶, a set of different configurations. I use 𝑦௜௝
to denote the predicted label of 𝑥௜ resulting from the 𝑗௧௛ configuration. Thus cross-validation

for each configuration creates tuples of the form (𝑥௜ , 𝑦௜ , 𝑦௜௝). Interaction with Prospect is

based on summarizing these tuples.

One way of summarizing tuples is to group all of the tuples by configuration and compute

statistic about each configuration. Programmers already do this. When using classification

algorithms, programmers look at measures like accuracy, precision, and recall to get a better

idea of how well a configuration is doing. Accuracy is computed by taking a single

configuration and looking at the predictions for each example to see how many examples

were predicted correctly.

Prospect’s real power lies in its ability to provide new information about the data itself. In the

99

Figure 5.2: Prospect allows programmers to see the distribution of predicted labels for each

example. Here the nine on the right is correctly classified by all of the configurations, the

four on the right is misclassified some of the time. In some configurations it is classified as

a nine. This information would be impossible to see by looking at the results for any given

model.

case of systems based on a single model, the predicted label is the only new information

about an example. In contrast, Prospect computes a distribution of predicted labels for each

example. This distribution allows Prospect to compute example-centric statistics (e.g., the

percentage of configurations that provide the correct predicted label, or the label that was

most frequently predicted).

5.2.2 Interactive Visualization of Statistics

These statistics can then be used to visualize data. Prospect provides a library of common

visualizations, such as histograms, scatter plots, and confusion matrices. Prospect provides

example-centric visualizations of the data, such as the grid view. This view allows

programmers to see examples in their dataset.

Prospect also provides new visualizations specific to multiple models. For example, in

addition to looking at each example, programmers can see the distribution of predicted

100

labels for each example. This allows programmers to see if an example was confused in any

of the configurations. For example in Figure 5.2, the programmer can see that the nine is

always classified correctly, whereas the second four is confused with a nine in some of the

configurations.

predicted

ac
tu

al

distribution of bluebells

Figure 5.3: The aggregate confusion matrix groups examples by class much like a normal

confusion matrix. Each row in the confusion matrix shows the distribution of predictions

per class across all of the configurations.

Prospect also provides an aggregate confusion matrix (Figure 5.3). Recall that a normal

confusion matrix breaks down predictions by ground truth class and predicted calls. High

numbers off the diagonal indicate consistent misclassifications from one class to another.

The aggregate confusion matrix takes this same concept and scales it to looking at multiple

models. The matrix is created by adding together all of the confusion matrices and

normalizing by rows. Each cell (𝑥, 𝑦) in the aggregate matrix shows the percentage of time

examples with ground truth 𝑥 were predicted to be class 𝑦 across all configurations.

Programmers can interact with the visualizations to filter their data. For example, they can

select and filter examples on a scatter plot. Or they can choose to filter configurations by

their accuracy value. Changes in filters modify computed statics. Modified statistics update

the visualizations of examples. Instead of describing the full set of visualizations and

interactions enabled by Prospect, the following sections focus on how the summary

101

statistics and interactive visualizations can be used to address two problems: helping detect

label noise and helping provide insight for generating new features.

5.3 Detecting Label Noise

80+ 70+ 60+ 50+

9 4

91

canonical

unsure

incorrectness

en
tr
o
py

confused

Figure 5.4: Themiddle image shows the incorrectness vs. entropy plot. Tofind label noise a

programmer removes low accuracy configurations and inspects examples in the confused

region.

Ground truth labels are often imperfect for a variety of reasons. For instance, humans are

prone to make errors when fatigued, when distracted, or when presented with inherently

ambiguous data. Noisy labels can adversely impact results, and they are often expensive to

find because detecting them often requires human inspection. Prospect can use multiple

models to reduce the number of examples a programmer inspects in debugging label noise.

Figure 5.4 (middle) shows a scatter plot visualization of two summary statistics for examples:

incorrectness and label entropy. Incorrectness (x-axis) is the percentage of configurations

that misclassify an example. Label entropy (y-axis) is the entropy of the distribution of labels

predicted by each configuration for an example. Given the indicator function 1{}, the set of

configurations 𝐶, and the set of labels 𝐿; these values are computed as follows:

𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠(𝑥௜) =
|஼|

෍
௝

1{𝑦௜ ≠ 𝑦௜௝)}
|𝐶|

102

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑥௜) = −෍
௟∈௅

∑|஼|
௝ 1{𝑦௜௝ = 𝑙}

|𝐶| × ln
∑|஼|
௝ 1{𝑦௜௝ = 𝑙}

|𝐶|

Figure 5.4 highlights three regions in the scatter plot. The canonical region contains

examples that most configurations classify correctly (i.e., low-incorrectness, low-entropy).

The unsure region contains examples for which different configurations generate widely

varying predicted labels (i.e., high entropy). The confused region contains examples with

high incorrectness and low entropy. These are the examples for which most configurations

agree on a predicted label, but the predicted label is not the same as the ground truth label.

These confused examples are of the most interest for detecting label noise, as the consistent

misclassification by many different models suggests the ground truth label may be incorrect.

Figure 5.4 shows the exact steps a programmer would take within Prospect to find potential

label noise. First, a programmer uses a configuration accuracy histogram to filter

configurations with poor performance; this removes noisy models and reduces variance.

Reducing high variance is important because it removes random noise from the system,

more effectively separating the confused and canonical regions. Second, they select a set of

relevant examples from the confused region of the scatter plot. Finally, they create a grid

view to inspect those examples together with their ground truth labels. In this case, we can

see that an example labeled nine is clearly a four and that an example labeled one may be a

nine.

5.4 Generating New Features
Feature discovery is a complex process, with programmers often needing to acquire

specialized domain knowledge before they can discover discriminative features. The key to

actual predicted

Figure 5.5: Looking at the confused examples in the unsure region can help programmers

understand their data and create features. Here programmers are looking at a confusion

in the aggregate confusion matrix.

103

discovering new discriminative features lies in understanding properties of the data that

distinguish one class from another. Such understanding can be developed through deep

analysis of the features or through analysis of how different examples are classified.

Automated feature selection methods generally focus on analysis of the feature set, but this

can be non-trivial for humans (especially in a high-dimensional feature space). On the other

hand, looking at how different examples are classified is generally easier to comprehend and

can provide insight into deficiencies of a feature set. Prospect provides visualizations to

examine aggregate statistics regarding how different examples are classified and

misclassified. This can in turn be used to identify situations where the current feature set is

not sufficiently descriptive.

Figure 5.5 illustrates how Prospect supports the interactive process of finding examples to

help build intuition for new features. The key idea is to enable programmers to observe a

summarization of how different examples are classified, which should then help them

develop insights about the differentiable characteristics of data. Figure 5.5’s incorrectness vs.

entropy plot again plays an important role in this process. To help develop insight into new

potential features, I focus on the unsure region of the plot (examples with high entropy).

These are misclassified by many configurations, but are not predominately mistaken for any

particular class. These seem crucial to the process of feature discovery because their high

entropy suggests that the available features cannot support reliable differentiation between

classes. Focusing on the development of new features that are relevant to these examples

should therefore provide new discriminative power to models.

Figure 5.5 shows the exact steps a programmer would take within Prospect to examine

unsure examples to help develop insight for new features. A programmer first uses a

rubberband tool to focus on a set of examples with high entropy and high incorrectness.

After filtering to focus only upon these examples, they create an aggregate confusion matrix.

This presents the normalized sum of confusion matrices for each configuration, highlighting

which classes are commonly confused across all models. The programmer can then click

into a cell in this aggregate confusion matrix to directly inspect examples that might benefit

from new features. Prospect presents a representative example of a class together with each

confused example. Here we can see that two examples have similar shape and color, but

could likely be better differentiated by a new feature capturing image texture.

104

5.5 Experimental Setup
Both experimental studies were conducted on three multi-class datasets taken from different

domains: the 20 newsgroups dataset [83], the MNIST digit recognition dataset [85], and the

flowers image recognition dataset [104]. I use the same scheme for generating

configurations in both evaluations. This section describes these common datasets and

configurations.

5.5.1 Datasets

The newsgroups dataset consists of posts collected from 20 different public newsgroups.

The original dataset consists of 20,000 documents across domains that are both related (e.g.,

comp.sys.ibm.pc.hardware and comp.sys.mac.hardware) and unrelated (e.g,.

misc.forsale and talk.politics.mideast). I select 1,000 articles balanced by class and

use the Weka API [137] to tokenize documents, stem words, and compute word count

features (2057 features in total).

The digits dataset consists of 28x28 images of handwritten numerical digits from 0 to 9. The

original dataset consists of 60,000 training and 10,000 test images which are normalized

from their original dimensions and resized and normalized to fit into a 20x20 pixel box. I

select 1,000 images balanced by class (100 for each digit) and use pixel values for features

(784 features in total).

The flowers dataset consists of 1760 images of 17 types of flowers. Images vary in scale,

pose, and lighting with large within-class variations. I select 680 examples balanced by class

(40 per class). I use precomputed shape, color and texture features provided by Nilsback et

al. [104].

5.5.2 Configurations

To create different configurations, I systematically vary the feature space, classification

algorithm, training and testing split, and other parameters. Specifically, I create multiple

feature spaces using feature selection based on information gain. I apply three different

classification algorithms (support vector machines, decision trees, and Naïve Bayes) and vary

parameters for each algorithm. I also randomly vary the composition of cross-validation

folds. My implementation uses feature selection and classification algorithms provided by

Weka.

105

I prune the set of configurations using two heuristics. First, in the interest of speed, I launch

each configuration in a thread that terminates after one minute. If the execution does not

terminate and produce a model I remove it from the list of configurations. Second, because I

want a varied distribution of predicted labels, I remove configurations that apply the same

classification algorithm and yield the same distribution of predicted labels.

My current process for automatically generating configurations is limited, as there is no

guarantee the set of configurations adequately samples the space of possible configurations.

Optimal sampling remains future work. Even with this current limitation, the results are

promising.

5.6 Evaluating Label Noise Detection
The confused region can be seen as a classifier that attempts to identify examples that are

incorrectly labeled. Because I want to minimize the examples a programmer inspects when

identifying label noise, I want to maximize incorrectly labeled examples (true positives) while

minimizing correctly labeled examples (false positives) in the confused region. I examine this

tradeoff in comparison to two experimental baseline thresholds.

I first compare to sampling according to the posterior probability of the highest-accuracy

model in the collection (sampling in order of increased confidence). This method finds

examples about which the single best model has the least confidence. I choose this model

for two reasons. First, programmers often debug using their highest-accuracy model.

Second, good training performance is often indicative of low bias, and a model with low bias

is likely to have a good true positive / false positive tradeoff. Success in this comparison thus

shows the value of explicitly considering multiple models.

The second comparison is to a threshold considering only the incorrectness statistic. The

confused region is differentiated from the unsure region according to the entropy of labels

predicted by different configurations. This comparison confirms that both statistics provide

distinct information to help in identifying noisy labels.

5.6.1 Procedure

To simulate label noise, I randomly selected 10 examples and randomly changed their

ground truth labels. Consistent with the process illustrated in Figure 5.4, I removed poorly

performing models by using only the top quartile of configurations (ordered by accuracy).

106

incorrectness single

and entropy incorrectness classifier

newsgroups 0.9978 0.9963 0.9929

digits 0.9952 0.9935 0.9878

flowers 0.9910 0.9804 0.9837

Table 5.1: For all three datasets the area under the ROC curve is higher if both incorrectness

and entropy values are used to find label noise.

My baseline conditions classify examples based on threshold cutoffs. Examples below the

threshold are correctly labeled, and examples above are incorrectly labeled. To compute

ROC curves for the baselines, I set a high threshold value such that all examples are correctly

labeled and then lower the threshold to compute the true positive and false positive rates.

I compare the baseline conditions to the confused region classifier. The confused region is a

rectangle defined by two points. The bottom-right point is anchored, and the top-left point

is variable. Examples within the rectangle are classified as incorrectly labeled. To compute

the ROC curve for the confused region, I generate a set of possible confused regions by

sampling different values for the top-left point and compute true-positive and false-positive

rates for each possible confused region.

5.6.2 Results

Table 5.1 shows the area under the ROC curve for the three datasets. The area is high for all

three conditions, but that is because ROC looks at the false positive and true positive rates. I

have an unbalanced set of positive and negative examples, so the rates will not correspond

to the actual number of false positives. Because I am trying to reduce the human cost of

finding label noise, measured in the number of examples a human must verify, the number

of false positives is important. Each new false positive is another example that must be

manually verified.

To show the number of examples a human must inspect, I plotted the tradeoff between

number of true positives (incorrectly labeled examples detected) and false positives

(correctly labeled examples classified as mislabeled examples).

Figure 5.6 shows this tradeoff for the three datasets. The plots show that looking at the

confused region (the solid red incorrectness and entropy line) results in fewer false positives

for each true positive detected than the baseline conditions. Focusing on the confused

region can reduce the number of examples a person must inspect by up to a factor of 3.

107

0"

2"

4"

6"

8"

10"

12"

0" 20" 40" 60" 80"

0"

2"

4"

6"

8"

10"

12"

0" 20" 40" 60" 80" 100" 120" 140"

0"

2"

4"

6"

8"

10"

12"

0" 20" 40" 60" 80" 100" 120" 140"

incorrectness and entropy
incorrectness

single classifier

n
ew

sg
ro
u
ps

di
gi
ts

flo
w
er
s

false positives (correctly labeled)

#
 t

ru
e

p
o

si
ti

ve
s

(m
is

la
b

el
ed

)

Figure 5.6: True positive vs. false positive for the three datasets. The incorrectness versus

entropy line corresponds to the confused region. For all of the datasets, false positives

occur inspecting examples within the confused region.

108

5.7 Evaluating Feature Generation
Human intuition is difficult to measure, and developing effective intuition about a feature

often requires in-depth understanding of the problem. Instead of attempting to directly

measure intuition, I assess how relevant examples are to the creation of new features.

Relevant examples are those with the most capacity for improvement – those that will be

“most helped” by the addition of new features. These should be most responsive to new

features, exhibiting a larger change in correctness than other examples.

I claim that the unsure region contains relevant examples. To evaluate this claim, I conduct

an experiment adding new descriptive features to a dataset and measuring the change in

correctness for examples from the unsure region relative to the remainder of examples. We

establish that examples from the unsure region are significantly more responsive to new

descriptive features. This validates that programmer focus on the unsure region can be an

effective strategy for developing insight to generate new features.

5.7.1 Procedure

The experiment requires two versions of each dataset: a before dataset and an after dataset

(created by the addition of new features). I define the base datasets to be the after datasets,

then create the before datasets by removing features. For the flowers dataset, I remove the

shape feature. The newsgroup features are not as clearly divisible, so I remove a random 75%

of the features. Random removal is ineffective in the digits data because adjacent pixel

values provide redundant information. I therefore define the before features to be only the

top-left region of each digit.

I define the unsure region in terms of the before dataset, thresholding at the top quartile of

examples (according to the entropy of distributions from the before configurations). This

splits the set of examples 𝑋 into the unsure region 𝑈 and the not unsure region 𝑋 − 𝑈. I then

compute 𝛿௙ , the change in correctness for each example resulting from adding additional

features to create the after dataset. To test that 𝑈 contains more relevant examples, I use a

t-test to determine whether 𝛿௙ is significantly greater in 𝑈 than in 𝑋 − 𝑈.

It is possible that a greater 𝛿௙ in 𝑈 is due to extreme entropy of the examples rather than

relevance to a new feature (i.e., an effect similar to regression to the mean). To test this, we

first generate a noise dataset by changing the random seed used to create cross-validation

folds in the before dataset.

109

Figure 5.7: Incorrectness decreases after a new feature is added for examples within and

outside of the unsure region. There is a significant difference for newsgroups and digits.

Changing the seed produces different training and validation sets, and different training sets

will lead to changes in models, predicted labels, and entropy values. However, the underlying

features are the same, only the training and verification splits differ. Since the features are the

same, I refer to this difference as noise, and I use the noise value to determine if changes in

entropy caused by the introduction of new features are significantly different than changes

in entropy caused by the introduction of noise. I define 𝛿௡ as the difference due to noise, and

use a t-test to determine whether 𝛿௡ is significantly greater in 𝑈 than in 𝑋 − 𝑈.

Because I find that examples in 𝑈 are more responsive to noise, it is important to establish

that the improvement to correctness that we see when adding relevant features 𝛿௙ is not

explained by the noise 𝛿௡. I examine this by testing that 𝛿௙ − 𝛿௡ is significantly greater in 𝑈
than in 𝑋 − 𝑈. This validates the relevance of examples in the unsure region.

5.7.2 Results

Figure 5.7 shows a bar graph and table of the improvement in correctness resulting from the

addition of new features. The correctness of unsure examples increases significantly more

than other examples (newsgroups: 𝑝 < 0.01, digits: 𝑝 < 0.01, and flowers: 𝑝 < 0.04). After

accounting for variation due to noise, I observe that this effect is significant for the

110

newsgroups (𝑝 < 0.01) and digits (𝑝 < 0.01) datasets. Although the improvement in

correctness is not significant for the flowers dataset (𝑝 ≈ 0.27), it is also not any worse.

Consequently, I can conclude that focusing on the unsure examples can indeed provide

programmers with insights critical to the process of interactive feature discovery.

In summary, the experiments indicate that focusing on examples in the unsure region can

only help. The unsure region is a good place to start when trying to generate new features.

While automatic discovery of new discriminative features is still a hard problem, Prospect

can help a human programmer to explore the properties of the dataset and reason about

such exogenous variables.

5.8 User Study
I conducted a user study in which participants provided me data they had collected and

were trying to model. After processing their data with Prospect and creating raw data

visualizations, I brought participants back to the lab and asked questions about examples in

the unsure and confused region. I recruited three participants (P1-P3). To maintain

anonymity, I refrain from describing their datasets in detail. P2 and P3 were working on

multi-class problems, while P1 was working on a binary classification problem.

Automation Saves Time and Effort: P1 had just started analyzing and modeling, and

Prospect allowed them to concentrate on features and data without worrying about

tweaking parameters. P2 was in the middle of analyzing and refining their data using a single

algorithm. Prospect helped them explore the space of configurations to find one that

provided a significant accuracy boost (around 30%). P3 was near the end of their project and

had painstakingly performed a manual exploration of configurations. They commented that

Prospect would have reduced the effort of manual exploration. In all three cases Prospect

either saved or would have saved participants time and effort.

Redesigning Data Collection: P1 found that their data was not rich enough to model their

classes. Prospect helped them conclude that a redesign of their data collection mechanism

would help create better models.

Finding Label Noise: P1 took steps to gather and verify clean data. P3 provided us an early

version of their data with label noise, and the noise was easy to spot in the confused region.

P2 had yet to perform a through data cleaning, and after reflection, they identified confused

111

examples as label noise. Data cleaning can be problematic, so Prospect’s ability to find label

noise was useful.

Reinforcing Feature Ideas: P3 noted that the unsure region contained examples that were

particularly hard to classify, and that they were modifying their approach to be robust to

these types of errors. Reflecting on their data, the P3 and I were able to co-design a potential

new feature. In fact, all three of the participants either came up with ideas for new features

or reinforced ideas they already had. In this way, Prospect was able to guide the feature

creation process.

5.9 Limitations
The current set of configurations, parameters, and pruning heuristics are hard coded.

Although my studies show that these parameters work well for a variety of tasks, intelligently

choosing which configurations to run might lead to the same results with less computation.

Currently, Prospect removes redundant configurations after they have already been

executed, but it may be possible to avoid redundancies online before Prospect runs a

configuration. For example, each time Prospect needs to run a new configuration, it could

look at what has already been run in the past and results from those configurations to inform

the creation of a new configuration. For example, if Prospect sees that Naïve Bayes

algorithms are not providing high quality models with varied results, it can use this

information to choose a different classification algorithm when creating the next

configuration.

When computing statistics, Prospect assumes that all configurations are equally important.

Weighting configurations may lead to better results and provide programmers with the

opportunity to steer results based on their preferences. By adding weights to components,

Prospect can increase the weight for configurations that provide significantly different

results. Additionally, if all configurations have weights, Prospect can run optimization

algorithms to automatically learn weights based on different preferences (e.g., high accuracy,

low redundancy).

The interactions that Prospect provides are based on a programmer exploring data by

switching between visualizations and zooming in on examples. However, these interactions

may be superfluous. My experiments show that certain types of examples are consistantly

good to inspect when creating new features or finding mislabeled data. Instead of moving

112

through visualizations, Prospect could provide an alternative interface based on questions. In

such an interface, a programmer could simply click a button to indicate that they are looking

for mislabeled examples. Based on this input, Prospect could automatically filter the dataset

to only show examples in the confused region of the incorrectness and entropy plot.

5.10 Summary
Prospect provides a interactive visualization interface that leverages predictions from

multiple models to help programmers understand their data. I have shown that Prospect

works well for two common debugging tasks (detecting label noise and generating new

features), and I believe there is potential to leverage multiple models to solve other questions

about data (e.g., determining whether to collect more data).

Prospect automatically creates multiple models, but the creation of multiple models also

happens organically as the result of experimentation. My studies show that supporting

experimentation and the capturing the resulting models and predictions is important for

supporting machine learning programming. In the next chapter, I discuss a new tool called

Hindsight which is designed to help programmers as they experiment by changing data and

code.

113

Chapter 6 | HINDSIGHT

The process of training a model involves iterative development of both data and code.

During this iterative process, programmers may change their data, the features they extract

from the data, the algorithm they use to model the data, their experimental methodology,

and even the metrics by which they evaluate their model. As they make changes, they

continually ask questions like: “Are my parameters tuned correctly? Is my data noisy? Do I

need more expressive features? Do I need to collect more data? Have I chosen the right

classification algorithm?”

But ultimately, programmers are just trying to answer one question: “Will this work?” More

concretely: “Will my code and model be accurate enough or fast enough or predictable

enough to solve my problem?” Often, this is not known a priori. When starting a classification

project, the programmer is often not aware if it is even possible to solve the problem they are

trying to solve with the data they are able to collect, with the features they can extract, and

with the algorithms they have chosen. However, programmers may have a hypothesis that

explains the reasons behind a poorly performing model. To find out if the behavior they

want is possible, programmers run experiments to explore the space of possible functions.

Running experiments is an important part of using machine learning. Though

experimentation, programmers begin to understand the details of the classification function

a computer has learned. My studies show that programmers train better models when they

are aware of the experimental process and make efforts to capture their own process.

However, tracking experiments is tedious and hard. Often, programmers do not realize that

114

they should track experiments at all until they find a systemic error that requires them to go

back and revisit prior assumptions. In this chapter, I present Hindsight. Hindsight automates

the process of capturing experimental history in order to help programmers reflect on what

they have done and make better experimental decisions.

This chapter consists of three parts. First, I discuss the experimental process involved in

training classifiers and the components of that process. Second, I discuss how Hindsight

helps programmers structure their classification pipeline so that it can automatically track

experimentation and how Hindsight supports the iterative process by making the stored

history visible and usable. Finally, I discuss how the features provided in Hindsight can be

extended to provide programmers with even better support for experimentation.

6.1 The Components of Experimentation
In this section, I discuss the key tasks involved in the process of experimentation with

machine learning: creating and curating multiple alternatives, comparing results, and

keeping an experimental history.

6.1.1 Multiple Alternatives

When a programmer asks, “Do I have enough data?,” they don’t necessarily care about the

data in and of itself. They care about improving the performance of their model, and they

hypothesize that an alternative model (i.e., one built with more data) will perform better. The

exploration of multiple alternatives is a core part of programming with machine learning.

The programmer creates new alternatives in many different ways. Some alternatives are the

product of an explicit hypothesis and an intentional change based on that hypothesis. In the

example above, the programmer’s current understanding of the program’s behavior directs

them to collect more data. Based on their understanding, they hypothesize that collecting

more data will lead to better performance. The programmer expects a certain behavior.

Other alternatives are the byproduct of exploration and knowledge gathering based on an

intuition about the way the model works. In these scenarios, the programmer doesn’t have

any expectations about the model’s exact behavior, but does have an intuition about the

meaning of the parameters used in the algorithm. For example, the depth of a decision tree

determines how well the model fits the training data – deeper trees often produce better

results. However, a tree that is too deep can overfit the training set and work poorly in

115

practice. A programmer using decision trees would vary the depth of the tree and look at

performance on the training and testing sets in order to determine which depth provides the

most accurate classification. This process creates multiple different alternatives that vary

along one parameter: the depth of the decision tree.

In contrast to the previous example, knowledge gathering can often be entirely undirected.

For instance, a programmer might try using the same feature set with three different

algorithms to see which one works better. In this scenario, the programmer doesn’t have any

intuition at all about how the algorithms work. They know that different algorithms can

provide different results, and they are trying to cover their bases. As they continue to evolve

their feature sets and datasets, they may periodically revisit their assumptions by

re-exploring old algorithms or exploring new algorithms altogether.

6.1.2 Comparisons

Each alternative (which may be a change in data, a change in parameter, or a change in

algorithm) has an associated result. This result is usually some sort of measurement. Recall

that a cross-validation experiment provides predicted labels for all of the data in the dataset.

Based on these predicted labels, programmers calculate summary statistics. The most

commonly used summary statistic is accuracy. Accuracy provides an easy high-level metric

for comparing two alternatives; the alternative with the higher accuracy is better.

Measurements are a key part of experimentation in programming with machine learning.

The availability of concrete performance measurements separates machine learning from

other exploratory programming tasks, such as designing an user interface. Measurements

allow programmers to understand the effect of a change. For instance, a programmer

comparing a Naïve Bayes algorithm to a support vector machine algorithm may find that the

support vector machine is more accurate. Then, they will associate the change in accuracy

with the change in algorithm. In this case, they will assume that support vector machines

are better at modeling their data.

In practice, a single measurement is rarely sufficient. My studies show that programmers

care about many different factors, some of which are easier to measure than others.

Fundamentally, programmers make decisions by weighing tradeoffs. For example, a

programmer using a Naïve Bayes algorithm might find that training and testing with this

algorithm is much faster than with support vector machines and may decide that the

116

increased accuracy is not worth the decreased training and testing speed. Tradeoffs are

often very specific to the problem at hand, and programmers often need to revise their

comparisons and measurements as they search through the space of possible functions.

6.1.3 Experimental History

One result of this search process is an experimental history consisting of changes to the

program and the associated measurements and results for each change. In my studies,

programmers who recorded their experimental history (either on paper or in file names)

developed the best classifiers. Recording experimental history is also common practice in

the natural sciences. Scientists keep lab notebooks with records of every experiment they try

and the results of each experiment. These notebooks help scientists track their process so

that they can review, communicate, and reproduce those experiments in the future.

Similarly, recording an experimental history allows a programmer to easily review what they

have already tried. More broadly, reviewing past performance helps programmers make

decisions about what to do in the future. For example, programmers may explore alternative

classification algorithms when they make significant changes to their dataset or their feature

generation code. Each alternative takes time to run. As the number of features increases and

the number of examples increases, programmers may find that they can’t test all of the

desired alternatives in a reasonable amount of time. Reviewing the experimental history can

help programmers prune their set of alternatives. For example, if a programmer finds that

decision trees always perform poorly, they can remove them from future explorations.

Histories also help programmers rerun experiments after discovering a systemic error in their

process. One example of a systemic error is when a programmer finds that their earlier

evaluation metrics were flawed. Consider the scenario where a programmer finds that they

have run the wrong type of cross-validation test for their chosen data set. In my studies,

these errors were common. Programmers frequently ran random cross-validation tests when

they should have run “leave-one-out” cross-validation tests. When programmers correct

those errors, not only do they find that their current model works poorly, but they also find

that they can’t trust their results from prior experiments. Earlier decisions to settle on a

specific algorithm or a specific feature set are called into question, and programmers have to

revisit these decisions. Poor experimental tracking can make this process significantly more

difficult. Without good tracking, it might be impossible to reproduce the conditions that led

to certain results, requiring the programmer to start over again from the beginning.

117

Hindsight reduces the effort needed to keep track of experiments performed during the

development process. It automatically tracks experimentation and stores structured

histories. These histories help Hindsight support comparisons and revisiting history. In the

next section, I discuss how Hindsight supports the components of experimentation.

6.2 Supporting Experimentation with Hindsight
Hindsight (Figure 6.1) is a general-purpose machine learning programming environment that

supports the development process around classification. Like Gestalt, Hindsight is not

constrained to any single domain. It provides programmers with a structured representation

of the classification pipeline, which helps them write well-organized code that defines the

logic of a particular pipeline. Hindsight uses this structure to represent multiple alternatives,

compare alternatives, capture an experimental history, and reuse histories to help

programmers experiment more effectively.

6.2.1 Multiple Alternatives

Traditional programming environments (e.g., Visual Studio, Eclipse) focus on the

development of a single program. In contrast, Hindsight is different from traditional

programming environments in that it supports the concurrent evolution of multiple

alternative programs as a high-level task. The curation and evolution of multiple potential

solutions is key facet of the machine learning process. In Hindsight, the program represents

an alternative classification pipeline. Programmers interact with alternative classification

pipelines though the “active alternatives” panel (Figure 6.1 top left).

In Hindsight, a pipeline is called a configuration. Figure 6.2 shows two alternative

configurations. The configuration consists of a list of components and their associated

parameters. Each component has an input and output type. Like most data flow languages,

two components can be connected together if the input type of the second component

matches the output type of the first component. Fundamentally, a configuration is a data

flow that describes the logic of a classification pipeline.

Programmers can define the logic of each component through code, or they can use

interactive components that don’t require explicit programming. The middle section of

Figure 6.1 shows two different components: Load Data (top) and Load MNIST (bottom).

While both components load digits, the way they load digit data differs. Load Data provides

118

Active
Alternatives

Interactive Data Collector

Code Editor

Build Queue

History

Figure 6.1: Hindsight supports the creation, curation, and execution ofmultiple alternative

configurations of a classification pipeline. Programmers can construct configurations by

combining components. Depending on the component, the logic of the component can

be specified by writing code or using a graphical user interface. As programmers explore

different alternatives, Hindsight records a history and presents an overview to program-

mers.

an interactive data collection interface where programmers can sketch new images.

Programmers might build such an interface to provide a continuous stream of fresh data to

their program. Load MNIST loads digit images from an existing data set using code.

Programmers may need to write code when bootstrapping their system from available data

sources. In Hindsight, these components are interchangeable. If a programmer has evolved

a pipeline using their own data, they can easily switch sources to try the other dataset.

Configurations also have parameters. Parameters are a way for a programmer to specify

commonly changing values without explicitly changing the code. For instance, a

programmer might want to change the depth value of a decision tree algorithm or the

number of folds in the cross-validation evaluation. In these scenarios, the change is too

119

1
Load
Digits

1
Pixel

Features

1
SVM

1
Evaluate

1
Load
MNIST

2
Pixel

Features

3
Naïve
Bayes

1
Evaluate

Figure 6.2: Two alternative configurations in Hindsight. The configurations are different,

but do share some common components (i.e., Pixel Features and Evaluation).

small to justify creating a new version of the component because it does not constitute a

significant semantic change to the behavior of the program.

In traditional programming environments, programmers have to add additional layers of

computation to try multiple alternatives. For example, if they want to try multiple data

sources, they have to write a “for” loop to iterate over those data sources. But in the

traditional development environment, they still only see one program. The multiple

alternatives are hidden by the opacity of the code. Hindsight surfaces these alternatives.

Programmers can easily see all of the configurations they are working on, which helps them

clearly understand the comparisons they are making.

In Hindsight, each component is versioned. When a programmer changes the logic of any

component, Hindsight automatically updates the version. For example, the programmer

changes the logic of the Load MNIST component in Figure 6.3 by writing code, and changes

the logic of the component in Figure 6.3 by sketching new data. When the programmer runs

the changed configuration, Hindsight saves the current updates and increments the versions

of each component. Programmers can fork a component at any previous version in order to

create a new component with the same logic. This allows programmers to take an existing

120

1
Load
Digits

1
Load
MNIST

Figure 6.3: Shows two alternative components with the same input and output types. In

Hindsight, programmers can mix components are purely code with those that are more

interactive. Load Digits provides an interactive sketching interface for gathering digit data,

while load MNIST loads data from a file.

121

component and try two different paths for achieving the same behavior. A programmer

might fork a component if they are trying to evolve and compare two different

implementations of the same algorithm.

Configurations may have a combination of shared components and unique components

(Figure 6.2). To make causal statements, programmers need to be able to compare

configurations to see what has changed. Programmers can distinguish components by

name, color, and version number. Color is an effective distinguishing factor because it allows

programmers to quickly detect differences by glancing at their list of configurations. For

example, it’s easy to see that the configurations in Figure 6.2 have different data sources.

Each component also has a status. An updated symbol on the status box indicates that the

component has changed since that last time the configuration was run. If any of the

components in a configuration have changed, the programmer can re-run the configuration

to get new results. In Hindsight, shared components are linked [95, 134]. This means that if

programmers edit the code for the Experiment component in Figure 6.2, both configurations

will be updated. Programmers can lock components to keep them from being updated. This

allows them to hold aspects of the configuration static when making comparisons.

Over time, programmers will add and delete configurations as they learn more about their

problem. For example, if a programmer discovers that decision trees are supposed to work

well for their problem, they may want to create an alternative configuration that uses

decision trees. Programmers can manually add new configurations by connecting

components. They can also add new configurations when they fork a component or replace

a component in an existing configuration. In this case, both the original and the new

configuration are kept in the list of active configurations. Programmers can remove

configurations by right-clicking on a component and selecting delete from the context menu.

6.2.2 Tracking History and Comparing Results

Hindsight automatically keeps a history of executed configurations and their results.

Programmers can interact with this history using the history panel shown in Figure 6.1 right.

The history panel provides a list of timestamps and accuracy measurements, which allows a

programmer to see their progress over time. Programmers can expand each entry to see the

specific configuration that resulted in each accuracy measurement, and they can

double-click on the entry to see more information about the results.

122

Programmers need to see the differences between configurations in order to tie changes in

code and data to changes in results. By having a structured representation of the pipeline

and by capturing history, Hindsight can help programmers make useful comparisons. The

history view itself provides a high-level comparison view. In this view, programmers can look

at each configuration and its associated accuracy.

The explicit structure of a configuration is important for tracking history. Traditionally,

programmers would have to manually track changes on paper and associate each change

with an accuracy measurement (Chapter 3). My studies show that manual tracking for

machine learning can be tedious and incomplete. Hindsight addresses both of these

problems by automatically versioning each component every time a programmer runs a

configuration. And, because Hindsight has access to all of the changes in program and the

associated results, Hindsight captures the complete set of information needed to reproduce

a particular experiment.

Programmers can make deeper comparisons by selecting two configurations from the

history and opening the comparison view (Figure 6.4). The comparison view shows both

configurations and highlights differences between them. The highlights allow programmers

to understand the exact differences between implementations. Figure 6.4 top shows that the

two configurations mostly agree, except for one parameter: the classification algorithm (in

blue). The comparison view also visualizes the examples in the dataset so that programmers

can dig deeper into the data behind the accuracy measurement. In this view, they can look

at the areas of agreement and disagreement between individual classifiers. The bottom of

Figure 6.4 shows a grid view of examples in the dataset. The visualization of each example

contains the ground-truth label, the predicted label from the first configuration, and the

predicted label from the section configuration. Programmers can see where the

configurations agree and disagree by applying filters.

The comparison interface can also help programmers avoid common mistakes. For example,

incomplete experiment logs can lead to errors in comparison. Consider the common

scenario in which a programmer changes both the dataset and the classification algorithm at

the same time and ends up with a lower accuracy. The programmer may forget that they

have made changes to the dataset and improperly attribute the lower accuracy to the

changed algorithm. Hindsight helps programmers avoid these mistakes. First, it explicitly

shows differences between configurations so programmers can see exactly what they have

123

Configuration
Di!erence

Predictions (ground truth, 1st, 2nd)

Filter

Figure 6.4: Hindsight allows programmers to look at the differences between both con-

figurations and results. In this figure, Hindsight shows the examples that were correctly

classified in the first configuration and incorrectly classified in the second configuration.

The ground truth value, predicted value for the first configuration, and predicted value for

the second configuration are shown on top of each example.

124

changed. Second, Hindsight can also detect invalid comparisons. For example, if two

different datasets are being used, there will be zero overlap in the examples and Hindsight

will notify the programmer of this fact.

Hindsight also provides a new visualization of the confusion matrix. In the comparison view

(Figure ??), programmers can click on the diff tab to look at the diff confusion matrix

(Figure 6.5). The diff confusion matrix is an aggregate view of how classification results have

changed between configurations. To build the diff confusion matrix, Hindsight first takes all

of the overlapping examples between the two datasets and creates a confusion matrix for

each of the configurations. Taking the diff is more than just subtracting one number from

another, because the cells in the configuration confusion matrices may have the same value,

but different examples. The diff confusion matrix has two values for each cell. The top value

shows how many examples in the first configuration were not present in the second

configuration and the bottom value shows how many examples in the second configuration

were not present in the first configuration. Since Hindsight looks at the examples rather than

just the values of the confusion matrix, it shows example-level changes that are normally

hidden when comparing aggregates.

6.2.3 Putting History to Work

Hindsight uses the structured representation of the pipeline and the recorded history to help

programmers overcome common experimental obstacles. Consider the scenario where a

programmer is building a handwritten digit recognizer. A month into experimentation, they

find that their evaluation metric is faulty. They were testing their algorithm using a random

cross-validation, and since they are working with people, they should have been using a

leave-one-out cross-validation technique. After correcting this mistake, changing their

evaluation technique reduces the performance of their algorithm.

This is a systematic error in their experimental process. The problem here is not that the

algorithm doesn’t work as well as it should. The real problem can be found in the thought

process behind the experiments. Each decision that they made (e.g. to include or exclude a

feature, or to prefer one classification algorithm over another) was based on results that

came from the incorrect evaluation metric. The correct thing to do would be to rerun the

previous experiments to see if the experimental path they took was a good one. However,

this is difficult in current programming tools. The tools do not maintain a log of what has

been tried, and machine learning source code is often not structured so that components

125

Figure 6.5: The diff confusion matrix shows the number of examples added to and re-

moved from a confusion matrix cell between configurations. This matrix provides more

information than just looking at the values of each confusion matrix. For example, the top

left cell (zeros that are classified as zeros) shows that one example has been added by the

second configuration and one has been removed by the second configuration. The value

for the confusion matrix would be the same, but the specific examples within the cells are

different.

126

can easily be swapped out.

Hindsight addresses this problem by allowing programmers to ask the following question

directly in the tool: “What if I had used a leave-one-out cross-validation instead of a random

cross-validation?” Programmers can pose this question by clicking on the “what-if” button.

While posing the question, the programmer can choose which specific component to

replace. In this case, they will choose to replace the evaluation component, and Hindsight

will filter the history to include only the configurations that have the specified evaluation

component. The programmer can then specify the new component they want to try and

then click “run”. Hindsight will rerun all of the previous experiments and present an overview

of the new results. Results are sorted so that the experiments that have changed the most

are at the top. This view allows programmers to see which experimental threads may be

worth exploring again.

The ability to ask “what if?” is not just useful for recovering from systemic errors, where

programmers know prior results are not trustworthy. Programmers often change

components and then find that those decisions have an effect on prior experiments. For

example, a programmer see how well their algorithms work with new data by changing the

dataset (Figure 6.6), or they may find a new feature set and test the differences between their

current implementation and the new implementation. In these cases, the programmer may

need to revisit old assumptions. Having a structured approach allows Hindsight to capture

history and make it easy to revisit old assumptions.

127

Figure 6.6: Hindsight reuses experimental histories to allow programmers to ask “what if?”

questions about prior experiments. Here the programmer asks, “What if I had used Load

MNIST as my dataset instead of Load Digits?” Hindsight finds all related configurations,

replaces the component, reruns the experiments, and provides a comparison between old

and new configurations.

128

6.3 Expanding Hindsight
Hindsight is a design exploration into how we can support experimentation in a

programming environment. Currently, Hindsight provides some support for experimental

tracking and the reuse of experimental history. This support helps automate some of the

common tasks involved when running experiments. However, as Hindsight evolves, there

will be new opportunities not only to better support common tasks, but also to leverage

computation in order to augment the experimental process in new ways. In this section, I

discuss some of these areas for expansion.

6.3.1 Automatic Hypothesis Testing

Explicitly formulating and discussing hypotheses is an important part of creating alternatives.

As Hindsight evolves, new automated methods may ease the task of hypothesis formulation

and management. One way of automating hypothesis testing is to represent some

hypotheses as constraints on the system. For example, a programmer may run a few

experiments evaluating algorithms and then choose support vector machines as their

algorithm of choice. By choosing support vector machines, they are implicitly stating a

belief. They are saying that for future datasets and feature sets, support vector machines will

produce better models than other classification algorithms, such as decision trees or Naïve

Bayes classifiers.

Hindsight could allow programmers to specify this belief as a constraint. The constraint

would assert that for all future experiments, the accuracy of Naïve Bayes and decision trees

should be lower than support vector machines. As the programmer continues to

experiment, Hindsight would wait for free processor time and automatically run other

algorithms in the background. If Hindsight ever finds that this constraint is broken, the tool

would inform the programmer and suggest a new alternative path for experimentation.

6.3.2 Using Experimental Histories

As a programmer continues to experiment, the size of the experimental history will grow. An

expanding experimental history provides opportunities to help guide future experimentation.

After the programmer runs a series of experiments, Hindsight builds a dataset of

experimental configurations and results. By analyzing patterns in this dataset, Hindsight can

provide suggestions for new experiments that might yield good results. In the ideal case,

Hindsight may even be able to run experiments automatically, evaluate if there are

129

interesting differences, and present those differences to the programmer.

However, an expanding experimental history also introduces new challenges. As the number

of experiments increases, understanding what has been tried and what has worked well

might be difficult. A first step would be to provide an interactive query interface for

programmers to filter and sort their experimental history. The interface could start as a

command line tool in which programmers write SQL-like queries, but it could eventually

evolve into a rich, interactive visualization tool. Building such a visualization system will

require creating new visualization techniques that both summarize the performance of the

system as a whole (e.g., a graph of accuracy over time) and provide ways to explore how

configurations and individual components have changed over time (e.g., visualizing the

evolution of the version control tree).

Another way to improve the organization of large experimental histories is to add new

information. For example, the system can automatically tag configurations based on how

they were created. Programmers could then filter out configurations that were created

automatically or configurations that have results that are too similar to previous results. The

system could also allow programmers to tag chosen configurations as important

performance milestones and re-visualize the experimental history to focus on those

configurations.

6.3.3 Multiple Comparisons

Hindsight currently supports the comparison of two alternatives. However, there are many

cases where the programmer may need to compare the performance of many different

alternatives at the same time. For example, a programmer might need to compare the

performance of many different algorithms or look at the accuracy response of a single

algorithm across a spectrum of parameter values. Hindsight can provide better support for

these scenarios.

Instead of writing code to explore parameter values, programmers could directly interact

with the visualizations to create and run new configurations. Consider the scenario where a

programmer wants to see how the accuracy of a decision tree changes as max depth of the

decision tree increases. The programmer could start by specifying the graph they want to

see by selecting “depth” for the x-axis and “accuracy” for the y-axis. Then, they may specify

the minimum and maximum values for the depth and the number of data points. Once

130

specified, Hindsight would automatically run the specific configurations and populate the

graph. The programmer could refine the graph by selecting a line segment and asking for

more samples along that segment. Hindsight would then create and run more

configurations to provide more data for that specific refinement.

6.4 Summary
When training the behavior of a model, programmers run experiments to search through the

space of possible functions. They may change their data, the features they extract from the

data, the algorithm they are trying to use to train a model, their experimental methodology,

and even the metrics with which they evaluate their model. To support machine learning in

general, a tool must support this specific experimental process.

In this chapter, I have presented Hindsight. Hindsight supports the creation and curation of

multiple alternative classification pipelines. As programmers experiment, Hindsight

automatically tracks changes to those pipelines and the results associated with those

changes. It provides comparisons to help programmers evaluate alternatives and make

informed decisions about next steps. By capturing the experimental process, Hindsight can

leverage the history to help programmers easily ask “what if?” questions about their data.

In the next chapter, I discuss extensions to my current work and conclude my dissertation.

131

Chapter 7 | CONCLUSION

In the preceding chapters, I presented studies examining why training a model using

machine learning is difficult. I then focused on classification algorithms and presented three

tools that address these difficulties. In this chapter, I explore how these tools can be

extended, and I conclude my dissertation.

7.1 Future Work
At the end of chapters 3 to 6, I described limitations of my existing work and opportunities

for extending that work. These discussions were limited to the specific studies or tools in

those chapters. In this section, I provide two directions for extending my research that cut

across all of my tools and studies.

7.1.1 Data-Oriented Programming

Gestalt, Hindsight, and Prospect are currently focused on classification algorithms.

Classification refers a specific set of machine learning teachniques. It assumes that

programmers provide the learning algorithm with inputs and outputs (i.e., examples and

labels). The algorithm trains a model that maps new inputs to outputs.

My tools and visualizations use the properties of classification to provide feedback to the

programmer. For instance, all of my tools take advantage of the fact that examples have

discrete ground truth and predicted labels. Gestalt provides confusion matrix visualizations

that present a breakdown of predicted and ground truth labels. Prospect looks at agreement

132

between predicted labels and ground truth labels to provide summary statistics. Hindsight’s

diff confusion matrix relies on the same information as a normal confusion matrix.

While some of the functionality will need to change, I believe the same interfaces can be

extended to support other machine learning techniques. For example, Prospect could

compare cluster similarity across different configurations. A modified version of Gestalt

could provide filters based on continuous values for regression models.

There is also larger space of techniques that involve working with data and code to create

models or programs. For example, many data-intensive computational tasks (e.g.,

visualization, gene alignment) also have a structured data flow pipeline [58] and can benefit

from history tracking support [50]. Although Hindsight is currently configured for

classification tasks, the underlying structure is general and can be extended to other

domains. For example, Figure 7.1 shows Hindsight working for a gene alignment task.

There is still a lot of work to be done before tools for training behavior are on par with tools

for authoring code. However, working with data and creating models is necessary for

tackling important problems. Discovering the common needs for these tasks and providing

appropriate tools can help programmers build the software needed to solve these problems.

7.1.2 Big Data

My tools have been tested with relatively small datasets. These datasets are large enough

that programmers cannot easily inspect all of the examples. They must create filters to

reduce the dataset so they can inspect a manageable number of examples. However, the

datasets are small enough for programmers to interactively train classifiers.

For many problems, the relevant data sets are large. For example, a recent image recognition

classifier trained on YouTube videos looked at 10 million images [84]. The sheer difficulty of

labeling such a dataset can mean that programmers have to use different techniques, each

with their own draw backs. Unsupervised algorithms might find patterns, but programmers

will have to make sense of groupings after the fact to understand what the system has

learned. Automatic labeling based on external data can be error prone, and systemic errors

can be hard to detect.

Additionally, large datasets take both a lot of time and computational power to model. Tools

can be extended to provide partial results. Many algorithms provide intermediate models

133

Figure 7.1: Gene alignment programs have a similar pipeline structure to classification

tasks: programmers need to be able to edit code and visualize data to iterate on their prob-

lem. The image above shows Hindsight extended to support the gene alignment problem.

There are two working pipelines, the output of which can be inspected and compared (vi-

sualization taken from .NET Bio [8]).

134

that are not optimal but help programmers detect errors. A tool could also automatically

pick small samples of a dataset to train smaller models quickly so programmers have some

data to explore while their system is training a model on the larger dataset.

Even when the system provides results, understanding mistakes can be difficult. A 99%

classification accuracy on a 10 million digit dataset means there are 100,000 incorrect

examples the programmer must inspect. A tool could take errors and further decompose

them by running clustering algorithms on the error set. Programmers could inspect smaller

clusters to try to reason about errors.

7.2 Conclusion
This dissertation was about programming computers. It focused on a specific programming

task: writing a function. A function takes inputs, performs operations, and provides outputs.

Functions are a basic unit of programming. They are composed together to create more

complex behaviors.

Typically, we program the behavior of a function by writing code. Programers manually

specificy or author a function. However, there are important functions that can not be

authored. We can still program some of these functions, but we must use different

techniques. For example, we can program a function by training a computer using both

code and data. The data provides examples of how we want the computer to behave, and

the code tells the computer how to interpret those examples and model the data.

Training a model has a different process than authoring a function. I presented two studies

that examined these differences for a specific set of training techniques, machine learning

algorithms. These studies helped me better understand the process for training a model

using machine learning, which I call the machine learning process. These studies also

pointed at failures in current tool support for using machine learning.

The machine learning process involves an implementation task where a programmer creates

a data flow pipeline using data and code. It also involves an analysis task where a

programmer runs experiments and creates visualizations to understand the behavior of their

data as it moves through the pipeline. Current machine learning tools are insufficient

because no tool provides a good programming environment that supports the machine

learning process. It is hard to move between implementation and analysis, focus on

135

understanding data, and manage and track experiments.

To support the tasks of implementation and analysis, I created Gestalt, an integrated

development environment designed around the machine learning process. Gestalt supports

structuring a pipeline, writing code, and analyzing data. It provides interactive visualization

capabilities to allow programmers to dig into errors to better understand the performance of

the model. I showed that Gestalt’s functionality helps programmers analyze the behavior of

their model and effectively supports debugging an existing machine learning system.

With Gestalt, when programmers analyze data they are still looking at the result from one

model. In this scenario, they may focus more on changing their model to improve

performance rather than looking at properties of their data. To help programmers focus on

understanding data, I created Prospect. Prospect was designed to help programmers spend

more time thinking about data and less time thinking about code. Specifically, it generates

multiple potential models for a single dataset by varying parameters, such as the machine

learning algorithm and the feature set. It uses results from these multiple models to provide

new insight about the dataset. My studies showed that Prospect can help programmers

address important data centric problems such as noisy data and non-descriptive features.

This process of making changes and looking at results produces an experimentation history.

To help programmers manage experiments and track history, I created Hindsight. Hindsight

supports three main tasks in experimentation with machine learning: the creation of

multiple alternatives, comparing results, and tracking history. By supporting these tasks and

capturing an experimentation history, Hindsight can provide new functionality that takes

advantage of historical data. For example, programmers can make a change to their data and

apply that change to every single experiment they have run in the past.

These tools are three probes into the space of tool support for programming computers by

training models. It is my hope that these tools provide inspiration for new tools that better

understand the differences between authoring functions and training models. These new

tools will go a long way to make training models as easy as authoring code is today,

unleashing the creativity of developers and helping us solve problems in today’s data rich

world.

136

BIBLIOGRAPHY

[1] Abobe Creative Suite, http://www.adobe.com/products/creativesuite.html.

[2] Apple OSX, http://www.apple.com/osx/.

[3] dlwh/breeze, https://github.com/dlwh/breeze.

[4] Dropbox, http://www.dropbox.com.

[5] MATLAB, http://www.mathworks.com/products/matlab/.

[6] matplotlib: python plotting, http://matplotlib.sourceforge.net/.

[7] Microsoft Visual Studio, http://www.microsoft.com/visualstudio/en-us.

[8] .NET Bio, http://bio.codeplex.com/.

[9] Palantir, http://www.palantir.com.

[10] Simulink, http://www.mathworks.com/products/simulink.

[11] Spotfire, http://spotfire.tibco.com/.

[12] Tableau, http://www.tableausoftware.com/.

[13] Christopher Ahlberg, Christopher Williamson, and Ben Shneiderman. Dynamic queries

for information exploration: An implementation and evaluation. CHI, 1992.

[14] Saleema Amershi, James Fogarty, Ashish Kapoor, and Desney Tan. Overview based

example selection in end user interactive concept learning. UIST, 2009.

[15] Saleema Amershi, James Fogarty, Ashish Kapoor, and Desney Tan. Examining multiple

potential models in end-user interactive concept learning. CHI, 2010.

[16] Saleema Amershi, James Fogarty, and Daniel S. Weld. ReGroup: interactive machine

learning for on-demand group creation in social networks. CHI, 2012.

[17] Saleema Amershi, Bongshin Lee, Ashish Kapoor, Ratul Mahajan, and Blaine Christian.

CueT: Human-Guided Fast and Accurate Network Alarm Triage. CHI, 2011.

[18] Mihael Ankerst, Christian Elsen, and Martin Ester. Visual classification: an interactive

approach to decision tree construction. KDD, 1999.

 http://www.adobe.com/products/creativesuite.html
 http://www.apple.com/osx/
 https://github.com/dlwh/breeze
 http://www.dropbox.com
 http://www.mathworks.com/products/matlab/
 http://matplotlib.sourceforge.net/
 http://www.microsoft.com/visualstudio/en-us
 http://bio.codeplex.com/
 http://www.palantir.com
 http://www.mathworks.com/products/simulink
 http://spotfire.tibco.com/
 http://www.tableausoftware.com/

137

[19] Larry Arnstein, Chia-Yang Hung, Robert Franza, Qing Hong Zhou, Gaetano Borriello,

Sunny Consolvo, and Jing Su. Labscape: a smart environment for the cell biology

laboratory. IEEE Pervasive Computing, 1(3), 2002.

[20] Daniel Ashbrook and Thad Starner. MAGIC: a motion gesture design tool. CHI, 2010.

[21] Sumit Basu, Steven M. Drucker, and Hao Lu. Assisting Users with Clustering Tasks by

Combining Metric Learning and Classification. AAAI, 2010.

[22] Barry Becker, Ron Kohavi, and Dan Sommerfield. Visualizing the Simple Bayesian

Classifier. In Information Visualization in Data Mining and Knowledge Discovery,

chapter 18, pages 237–250. 2001.

[23] Richard A. Becker and William S. Cleveland. Brushing Scatterplots. Technometrics,

29(2), 2012.

[24] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter,

Thorsten Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel. KNIME: The Konstanz

Information Miner. SIGKDD Explorations, 11(1), 2008.

[25] Peter A. Blume. The LabVIEW Style Book. 2007.

[26] Michael Bostock and Jeffrey Heer. Protovis: a graphical toolkit for visualization. VIS,

2009.

[27] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D³: Data-Driven Documents.

VIS, 2011.

[28] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, Scott R. Klemmer, and San

Francisco. Two Studies of Opportunistic Programming: Interleaving Web Foraging,

Learning, and Writing Code. CHI, 2009.

[29] Leo Breiman. Bagging Predictors. Machine Learning, 24(2), 1996.

[30] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Scheidegger, Cláudio T.

Silva, and Huy T. Vo. Managing the Evolution of Dataflows with VisTrails. ICDEW,

Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp,

Belgium., 2006.

[31] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Scheidegger, Cláudio T.

Silva, and Huy T. Vo. VisTrails: Visualization meets Data Management. SIGMOD, 2006.

[32] Doina Caragea, Dianne Cook, Hadley Wickham, and Vasant Honavar. Visual Methods

for Examining SVM Classifiers. In Visual Data Mining: Theory, Techniques, and Tools for

Visual Analytics, pages 136–153. 2008.

[33] Per Cederqvist. Version Management with CVS. 2002.

138

[34] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in Databases:

Why, How, and Where. Foundations and Trends in Databases, 1(4), 2007.

[35] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control with

Subversion, volume 1. 2008.

[36] P.T. Cox, F.R. Giles, and T. Pietrzykowski. Prograph: a step towards liberating

programming from textual conditioning. VL, 1989.

[37] Joseph A. Cruz and David S. Wishart. Applications of Machine Learning in Cancer

Prediction and Prognosis. Cancer Informatics, 2, 2006.

[38] Janez Demšar, Blaz Zupan, Gregor Leban, and Tomaz Curk. Orange: From

Experimental Machine Learning to Interactive Data Mining. KDD, 2004.

[39] Brenda Dervin. From the mind’s eye of the user: The sense-making

qualitative-quantitative methodology. In Jack D Glazier and Ronald R Powell, editors,

Qualitative research in information management, Qualitative Research In Information

Management, chapter 14, pages 61–84. 1992.

[40] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. a CAPpella:

programming by demonstration of context-aware applications. CHI, 2004.

[41] Steven P. Dow, Julie Fortuna, Dan Schwartz, Beth Altringer, Daniel L. Schwartz, and

Scott R. Klemmer. Prototyping Dynamics : Sharing Multiple Designs Improves

Exploration, Group Rapport, and Results. CHI, 2011.

[42] Steven P. Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L. Schwartz, and

Scott R. Klemmer. Parallel prototyping leads to better design results, more divergence,

and increased self-efficacy. ACM Transactions on Computer-Human Interaction, 17(4),

2010.

[43] Steven M. Drucker, Danyel Fisher, Sumit Basu, and Microsoft Way. Helping Users Sort

Faster with Adaptive Machine Learning Recommendations. INTERACT, 2011.

[44] Jacky Estublier, David Leblang, André Van Der Hoek, Reidar Conradi, Geoffrey Clemm,

Walter Tichy, and Darcy Wiborg-Weber. Impact of software engineering research on

the practice of software configuration management. ACM Transactions on Software

Engineering and Methodology, 14(4), 2005.

[45] Jerry Alan Fails and Dan R. Olsen. A Design Tool for Camera-based Interaction. CHI,

2003.

[46] Jerry Alan Fails and Dan R. Olsen. Interactive Machine Learning. IUI, 2003.

[47] Rebecca Fiebrink, Dan Trueman, and Perry R. Cook. A Meta-Instrument for Interactive ,

On-the-fly Machine Learning. NIME, 2009.

139

[48] James Fogarty and Scott E. Hudson. Toolkit support for developing and deploying

sensor-based statistical models of human situations. CHI, 2007.

[49] James Fogarty, Desney Tan, Ashish Kapoor, and Simon Winder. CueFlik: Interactive

Concept Learning in Image Search. CHI, 2008.

[50] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T. Silva. Provenance for

computational tasks: a survey. Computing in Science and Engineering, 10(3), 2008.

[51] James Frew, Dominic Metzger, and Peter Slaughter. Automatic capture and

reconstruction of computational provenance. Concurrency and Computation: Practice

& Experience, 20(5), 2008.

[52] Thomas Green and Alan Blackwell. Cognitive dimensions of information artefacts: a

tutorial. Technical report, 1998.

[53] Philip J. Guo and Margo Seltzer. Burrito: Wrapping Your Lab Notebook in

Computational Infrastructure. TaPP, 2012.

[54] Björn Hartmann, Leith Abdulla, Manas Mittal, and Scott R. Klemmer. Authoring

sensor-based interactions by demonstration with direct manipulation and pattern

recognition. CHI, 2007.

[55] Björn Hartmann, Loren Yu, Abel Allison, and Yeonsoo Yang. Design as exploration:

creating interface alternatives through parallel authoring and runtime tuning. CHI,

2008.

[56] Jeffrey Heer and Maneesh Agrawala. Software design patterns for information

visualization. VIS, 2006.

[57] Jeffrey Heer and Maneesh Agrawala. Design considerations for collaborative visual

analytics. VAST, 2007.

[58] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit for interactive

information visualization. CHI, 2005.

[59] Jeffrey Heer, Fernanda B Viégas, and Martin Wattenberg. Voyagers and Voyeurs :

Supporting Asynchronous Collaborative Information Visualization. CHI, 2007.

[60] Charles Antony Richard Hoare. An axiomatic basis for computer programming.

Communications of the ACM, 12(10), 1969.

[61] Mark R. Hodges and Martha E. Pollack. An ‘Object-Use Fingerprint’: The Use of

Electronic Sensors for Human Identification. UbiComp, 2007.

[62] Raphael Hoffmann, Saleema Amershi, Kayur Patel, Fei Wu, James Fogarty, and Daniel S.

Weld. Amplifying community content creation with mixed initiative information

140

extraction. CHI, 2009.

[63] Eric Horvitz. Principles of mixed-initiative user interfaces. CHI, 1999.

[64] Susan Horwitz. Identifying the semantic and textual differences between two versions

of a program. PLDI, 1990.

[65] J.W. Hunt and M.D. Mcilroy. An Algorithm for Differential File Comparison. Technical

Report 41, Bell Labs, 1976.

[66] Ross Ihaka and Robert Gentleman. R: A Language for Data Analysis and Graphics.

Journal of Computational and Graphical Statistics, 5(3), 1996.

[67] Jensen Harris. No distaste for paste,

http://blogs.msdn.com/b/jensenh/archive/2006/04/07/570798.aspx, 2006.

[68] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow

programming languages. ACM Computing Surveys, 36(1), 2004.

[69] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do

code clones matter? ICSE, 2009.

[70] Ashish Kapoor, Bongshin Lee, Desney Tan, and Eric Horvitz. Interactive optimization

for steering machine classification. CHI, 2010.

[71] Josef Kittler, Mohamad Hatef, Robert P.W. Duin, and Jiri Matas. On combining

classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 1998.

[72] Scott R. Klemmer, Mark W. Newman, Ryan Farrell, Mark Bilezikjian, and James A.

Landay. The Designer’s Outpost: A Tangible Interface for Collaborative Web Site

Design. UIST, 2001.

[73] Scott R. Klemmer, Michael Thomsen, Ethan Phelps-Goodman, Robert Lee, and

James A. Landay. Where Do Web Sites Come From? Capturing and Interacting with

Design History. CHI, 2002.

[74] Donald E. Knuth. The Errors of TEX. Software: Practice and Experience, 19(7), 1989.

[75] Andrew J. Ko and Brad A. Myers. Development and evaluation of a model of

programming errors. VLHCC, 2003.

[76] Andrew J. Ko and Brad A. Myers. Designing the whyline: a debugging interface for

asking questions about program behavior. CHI, 2004.

[77] Andrew J. Ko and Brad a. Myers. A framework and methodology for studying the

causes of software errors in programming systems. Journal of Visual Languages &

Computing, 16(1-2), 2005.

 http://blogs.msdn.com/b/jensenh/archive/2006/04/07/570798.aspx

141

[78] Andrew J. Ko and Brad A. Myers. Debugging reinvented: asking and answering why

and why not questions about program behavior. ICSE, 2008.

[79] Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. Six Learning Barriers in End-User

Programming Systems. VLHCC, 2004.

[80] Ron Kohavi and David H. Wolpert. Bias Plus Variance Decomposition for Zero-One

Loss Functions. ICML, 1996.

[81] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara, and Satoshi

Moriai. The Linux implementation of a log-structured file system. ACM SIGOPS

Operating Systems Review, 40(3), 2006.

[82] Todd Kulesza, Weng-keen Wong, Simone Stumpf, Stephen Perona, Rachel White,

Margaret M. Burnett, Ian Oberst, and Andrew J. Ko. Fixing the Program My Computer

Learned: Barriers for End Users, Challenges for the Machine. IUI, 2009.

[83] Ken Lang. NewsWeeder: Learning to Filter Netnews. ICML, 1995.

[84] Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S.

Corrado, Jeff Dean, and Andrew Y. Ng. Building high-level features using large scale

unsupervised learning. ICML, 2012.

[85] Yann Lecun, Lèon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based

Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), 1998.

[86] Jon Loeliger. Version Control with Git: Powerful Tools and Techniques for Collaborative

Software Development. 2009.

[87] Allan Christian Long, James A. Landay, and Lawrence A. Rowe. Implications for a

gesture design tool. CHI, 1999.

[88] Ada Lovelace. Translator notes to ”Sketch of the Analaytical Engine Invented by

Charges Babbage, Esq.”. Scientific Memoirs, 3, 1843.

[89] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew

Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific workflow management and

the Kepler system. Concurrency and Computation: Practice & Experience, 18(10), 2006.

[90] Peter Macko, Margo Seltzer, and Kiran-Kumar Muniswamy-Reddy. Provenance for the

cloud. FAST, 2010.

[91] Dan Maynes-Aminzade, Terry Winograd, and Takeo Igarashi. Eyepatch: Prototyping

Camera-based Interaction through Examples. UIST, 2007.

[92] Donald Michie. “Memo” Functions and Machine Learning. Nature, 218(5136), 1968.

142

[93] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler. YALE:

Rapid Prototyping for Complex Data Mining Tasks. KDD, 2006.

[94] Lance A. Miller and John C. Thomas. Behavioral Issues in the use of interactive

systems. International Journal of Man-Machine Studies, 9(5), 1977.

[95] Robert C. Miller and Brad A. Myers. Interactive Simultaneous Editing of Multiple Text

Regions. USENIX, 2001.

[96] Tom M. Mitchell. Machine Learning. 1997.

[97] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko, Diana

Maclean, Daniel Margo, Margo Seltzer, and Robin Smogor. Layering in provenance

systems. USE, 2009.

[98] Kiran-Kumar Muniswamy-Reddy and David a. Holland. Causality-based versioning.

ACM Transactions on Storage, 5(4), 2009.

[99] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo Seltzer.

Provenance-aware storage systems. USENIX, 2006.

[100] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present, and future of user

interface software tools. ACM Transactions on Computer-Human Interaction, 7(1),

2000.

[101] Brad A. Myers and David S. Kosbie. Reusable Hierarchical Command Objects. CHI, 1996.

[102] Brad A. Myers, David A. Weitzman, Andrew J. Ko, and Duen Horng Chau. Answering

why and why not questions in user interfaces. CHI, 2006.

[103] Mark W. Newman and James A. Landay. A Sketch of Web Site Design Practice. DIS,

2000.

[104] Maria-Elena Nilsback and Andrew Zisserman. A Visual Vocabulary for Flower

Classification. CVPR, 2006.

[105] Tom Oinn, Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin Ferris, Kevin

Glover, Carole Goble, Antoon Goderis, Duncan Hull, Darren Marvin, Peter Li, Phillip

Lord, Matthew R. Pocock, Martin Senger, Robert Stevens, Anil Wipat, and Chris Wroe.

Taverna: Lessons in creating a workflow environment for the life sciences.

Concurrency and Computation: Practice & Experience, 18(10), 2006.

[106] Bryan O’Sullivan. Mercurial: The Definitive Guide, volume 7. 2009.

[107] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment

classification using machine learning techniques. EMNLP, 2002.

143

[108] Kayur Patel, Naomi Bancroft, Steven M. Drucker, James Fogarty, Andrew J. Ko, and

James A. Landay. Gestalt: Integrated Support for Implementation and Analysis in

Machine Learning ProcessesNo Title. UIST, 2010.

[109] Kayur Patel, Steven M. Drucker, James Fogarty, Ashish Kapoor, and Desney S. Tan.

Using Multiple Models to Understand Data. IJCAI, 2008.

[110] Kayur Patel, James Fogarty, James A. Landay, and Beverly Harrison. Investigating

Statistical Machine Learning as a Tool for Software Development. CHI, 2008.

[111] Alan Ritter and Sumit Basu. Learning to generalize for complex selection tasks. IUI,

2009.

[112] Nick Rizzolo and Dan Roth. Learning based java for rapid development of nlp systems.

LREC, 2010.

[113] Jonathan B. Rosenberg. How Debuggers Work: Algorithms, Data Structure, and

Architecture. 1996.

[114] Dean Rubine. Specifying gestures by example. SIGGRAPH, 1991.

[115] Daniel M. Russell, Mark J. Stefik, Peter Pirolli, and Stuart K. Card. The cost structure of

sensemaking. INTERACT, 1993.

[116] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A Bayesian

approach to filtering junk e-mail. AAAI Workshop on Learning for Text Categorization,

1998.

[117] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch, Ross W.

Carton, and Jacob Ofir. Deciding when to forget in the elephant file system. ACM

SIGOPS Operating Systems Review, 34(2), 2000.

[118] Robert E. Schapire. The boosting approach to machine learning: an overview. MSRI

Workshop on Nonlinear Estimation and Classification, Shannon Laboratory, 2002.

[119] Carlos E. Scheidegger, Huy T. Vo, David Koop, and Juliana Freire. Querying and

Re-Using Workflows with VisTrails. SIGMOD, 2008.

[120] Carlos E. Scheidegger, Huy T. Vo, David Koop, Juliana Freire, and Cláudio T. Silva.

Querying and creating visualizations by analogy. IEEE Transactions on Visualization

and Computer Graphics, 13(6), 2007.

[121] Ben Shneiderman. Visual User Interfaces for Information Exploration. ASIS&T, 1991.

[122] Ben Shneiderman. Dynamic queries for visual information seeking. IEEE Software,

11(6), 1994.

144

[123] Ben Shneiderman. The eyes have it: a task by data type taxonomy for information

visualizations. VL, 1996.

[124] Ben Shneiderman. Creating Creativity : User Interfaces for Supporting Innovation.

Transactions on Computer-Human Interaction, 7(1), 2000.

[125] Rok Sosič and David Abramson. Guard: A relative debugger. Software: Practice and

Experience, 27(2), 1997.

[126] Christopher Stolte, Diane Tang, and Pat Hanrahan. Polaris: A System for Query,

Analysis, nd Visualization of Multidimensional Relational Databases. IEEE Transactions

on Visualization and Computer Graphics, 8(1), 2002.

[127] Simone Stumpf, Vidya Rajaram, Lida Li, Margaret Burnett, Thomas Dietterich, Erin

Sullivan, Russell Drummond, and Jonathan Herlocker. Toward Harnessing User

Feedback for Machine Learning. IUI, 2007.

[128] William Robert Sutherland. The on-line graphical specification of computer

procedures. PhD thesis, MIT, 1963.

[129] Justin Talbot, Bongshin Lee, Ashish Kapoor, and Desney S. Tan. EnsembleMatrix:

interactive visualization to support machine learning with multiple classifiers. CHI,

2009.

[130] Michael Terry and Elizabeth D. Mynatt. Recognizing creative needs in user interface

design. C&C, 2002.

[131] Michael Terry and Elizabeth D. Mynatt. Side Views : Persistent , On-Demand Previews

for Open-Ended Tasks. UIST, 2002.

[132] Walter F. Tichy. Rcs — a system for version control. Software: Practice and Experience,

15(7), 1985.

[133] Ryan Tomayko. Introducing GitHub Compare View,

https://github.com/blog/612-introducing-github-compare-view, 2010.

[134] Michael Toomim, Andrew Begel, and Susan L. Graham. Managing Duplicated Code

with Linked Editing. VLHCC, 2004.

[135] Daniel S. Weld, Raphael Hoffmann, and Fei Wu. Using Wikipedia to bootstrap open

information extraction. ACM SIGMOD Record, 37(4), 2009.

[136] Christopher Williamson and Ben Shneiderman. The Dynamic HomeFinder: Evaluating

Dynamic Queries in a Real-Estate Information Exploration. SIGIR, 1992.

[137] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and

Techniques. 2nd edition, 2005.

 https://github.com/blog/612-introducing-github-compare-view

145

[138] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without libraries, toolkits

or training: a $1 recognizer for user interface prototypes. UIST, 2007.

[139] Kang Zhang. Visual Languages And Applications. 2007.

[140] George Kingsley Zipf. Human behavior and the principle of least effort. 1949.

	List of Figures
	List of Tables
	Glossary
	Introduction
	Machine Learning
	Scenario: Routing Physical Mail
	The Programming Process
	Outline

	Related Work
	Writing and Managing Code
	Analyzing Data
	Experimentation
	Current Machine Learning Tools
	Summary

	Studies
	Interviews
	Intermediate Interview Results
	Laboratory Study
	Results
	Implications for Tool Design
	Summary

	Gestalt
	The Machine Learning Process
	Providing General Purpose Support
	Gestalt
	Evaluating Bug Finding in Gestalt
	Discussion
	Limitations
	Summary

	Prospect
	Using Multiple Models
	The Prospect System
	Detecting Label Noise
	Generating New Features
	Experimental Setup
	Evaluating Label Noise Detection
	Evaluating Feature Generation
	User Study
	Limitations
	Summary

	Hindsight
	The Components of Experimentation
	Supporting Experimentation with Hindsight
	Expanding Hindsight
	Summary

	Conclusion
	Future Work
	Conclusion

	Bibliography

