I'm a Research Scientist at Apple. I lead a team of designers and researchers that work on making
machine learning more useful and easier to use. I'm motivated by the following observation:
Over the last two decades, the machine learning community has made amazing progress.
Computers can recognize speech, diagnose cancer, and drive cars. Computers can do things
that we could barely imagine years ago. So why aren’t there more products that use
machine learning? Why do we need machine learning PhDs to train successful models? Why
is building software powered by machine learning so hard? I think about these questions,
search for answers, and in the process, end up building software that makes it easier for
more people to use machine learning.
I’ve been lucky. I’ve studied at some amazing places, worked with great people, and
created things I’m proud of. Happy to tell you the full story over coffee, but here
are some highlights:
I noticed that good machine learning models did not lead to great products. I worked
with the design studio to understand how machine learning impacts user experience, and
based on that understanding, created machine-learning-based products and experiences
that people love. We shared what we learned at
WWDC and released
new human-interface guidelines for machine learning.
I wanted to make it easier for teams to work with data and machine learning, so I started
and led the
Colaboratory team as part of
Google Research, now Google AI. I also got to watch the rise of Google as an AI-first company,
help teach the first large scale machine learning and data science courses at Google, and
teach one of the first data science courses at Columbia University.
I noticed that machine learning tools were hard to use and often used improperly. I studied
machine learning engineers, understood their workflows, and built tools to make their jobs
easier. I wrote a
thesis that I’m proud of and whose
underlying findings are still relevant a decade later.
I wanted to learn more about machine learning, so I started a machine learning focused masters
at Stanford. I happened to be in the room when Stanford decided to build a car for DARPA Grand
Challenge and got to write the
first paper from Stanford on self
driving cars. I also moonlit in Jeremy Bailenson's virtual reality lab studying how people
learn physical skills in VR settings.
A series of disconnected, seemingly random events and interactions led me to study at Carnegie
Mellon, take classes in computer science, machine learning, and design, work with a research
team that built
speech systems on wearable computers with head
mounted displays, and apply to graduate school. These experiences set the groundwork for
everything I’ve done since.